利用主题发现对社交网络分析中的大型通信图进行分割

Maximilian Viermetz, Michal Skubacz
{"title":"利用主题发现对社交网络分析中的大型通信图进行分割","authors":"Maximilian Viermetz, Michal Skubacz","doi":"10.1109/WI.2007.109","DOIUrl":null,"url":null,"abstract":"The application of social network analysis to graphs found in the World Wide Web and the Internet has received increasing attention in recent years. Networks as diverse as those generated by e-mail communication, instant messaging, link structure in the Internet as well as citation and collaboration networks have all been treated with this method. So far these analyses solely utilize graph structure. There is, however, another source of information available in messaging corpora, namely content. We propose to apply the field of content analysis to the process of social network analysis. By extracting relevant and cohesive sub-networks from massive graphs, we obtain information on the actors contained in such sub-networks to a much firmer degree than before.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Using Topic Discovery to Segment Large Communication Graphs for Social Network Analysis\",\"authors\":\"Maximilian Viermetz, Michal Skubacz\",\"doi\":\"10.1109/WI.2007.109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The application of social network analysis to graphs found in the World Wide Web and the Internet has received increasing attention in recent years. Networks as diverse as those generated by e-mail communication, instant messaging, link structure in the Internet as well as citation and collaboration networks have all been treated with this method. So far these analyses solely utilize graph structure. There is, however, another source of information available in messaging corpora, namely content. We propose to apply the field of content analysis to the process of social network analysis. By extracting relevant and cohesive sub-networks from massive graphs, we obtain information on the actors contained in such sub-networks to a much firmer degree than before.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

近年来,将社交网络分析应用于万维网和互联网上的图表受到越来越多的关注。各种各样的网络,如由电子邮件通信、即时消息、互联网中的链接结构以及引用和协作网络产生的网络,都用这种方法进行了处理。到目前为止,这些分析仅使用图结构。然而,在消息传递语料库中还有另一个可用的信息源,即内容。我们建议将内容分析领域应用到社会网络分析的过程中。通过从海量图中提取相关且内聚的子网络,我们获得了比以前更可靠的子网络中包含的行动者的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Topic Discovery to Segment Large Communication Graphs for Social Network Analysis
The application of social network analysis to graphs found in the World Wide Web and the Internet has received increasing attention in recent years. Networks as diverse as those generated by e-mail communication, instant messaging, link structure in the Internet as well as citation and collaboration networks have all been treated with this method. So far these analyses solely utilize graph structure. There is, however, another source of information available in messaging corpora, namely content. We propose to apply the field of content analysis to the process of social network analysis. By extracting relevant and cohesive sub-networks from massive graphs, we obtain information on the actors contained in such sub-networks to a much firmer degree than before.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信