基于元学习的基于肌电图的语音识别器自适应

Krsto Prorokovic, Michael Wand, Tanja Schultz, J. Schmidhuber
{"title":"基于元学习的基于肌电图的语音识别器自适应","authors":"Krsto Prorokovic, Michael Wand, Tanja Schultz, J. Schmidhuber","doi":"10.1109/GlobalSIP45357.2019.8969231","DOIUrl":null,"url":null,"abstract":"In nonacoustic speech recognition based on electromyography, i.e. on electrical muscle activity captured by noninvasive surface electrodes, differences between recording sessions are known to cause deteriorating system accuracy. Efficient adaptation of an existing system to an unseen recording session is therefore imperative for practical usage scenarios. We report on a meta-learning approach to pretrain a deep neural network frontend for a myoelectric speech recognizer in a way that it can be easily adapted to a new session. Fine-tuning this specially pretrained network yields lower Word Error Rates and higher frame accuracies than fine-tuning a conventionally pretrained network, without creating an increased computational burden on a possibly mobile device.","PeriodicalId":221378,"journal":{"name":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"202 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adaptation of an EMG-Based Speech Recognizer via Meta-Learning\",\"authors\":\"Krsto Prorokovic, Michael Wand, Tanja Schultz, J. Schmidhuber\",\"doi\":\"10.1109/GlobalSIP45357.2019.8969231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nonacoustic speech recognition based on electromyography, i.e. on electrical muscle activity captured by noninvasive surface electrodes, differences between recording sessions are known to cause deteriorating system accuracy. Efficient adaptation of an existing system to an unseen recording session is therefore imperative for practical usage scenarios. We report on a meta-learning approach to pretrain a deep neural network frontend for a myoelectric speech recognizer in a way that it can be easily adapted to a new session. Fine-tuning this specially pretrained network yields lower Word Error Rates and higher frame accuracies than fine-tuning a conventionally pretrained network, without creating an increased computational burden on a possibly mobile device.\",\"PeriodicalId\":221378,\"journal\":{\"name\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"volume\":\"202 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GlobalSIP45357.2019.8969231\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP45357.2019.8969231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在基于肌电图的非声学语音识别中,即通过非侵入性表面电极捕获的电肌肉活动,已知记录会话之间的差异会导致系统准确性下降。因此,在实际使用场景中,有效地适应现有系统对未见过的记录会话是必要的。我们报告了一种元学习方法来预训练肌电语音识别器的深度神经网络前端,这种方法可以很容易地适应新的会话。与传统的预训练网络相比,微调这个特别预训练的网络会产生更低的字错误率和更高的帧精度,而不会在可能的移动设备上增加计算负担。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptation of an EMG-Based Speech Recognizer via Meta-Learning
In nonacoustic speech recognition based on electromyography, i.e. on electrical muscle activity captured by noninvasive surface electrodes, differences between recording sessions are known to cause deteriorating system accuracy. Efficient adaptation of an existing system to an unseen recording session is therefore imperative for practical usage scenarios. We report on a meta-learning approach to pretrain a deep neural network frontend for a myoelectric speech recognizer in a way that it can be easily adapted to a new session. Fine-tuning this specially pretrained network yields lower Word Error Rates and higher frame accuracies than fine-tuning a conventionally pretrained network, without creating an increased computational burden on a possibly mobile device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信