一种基于增强的基于最小的可能性因果网络编译方法

R. Ayachi, N. B. Amor, S. Benferhat
{"title":"一种基于增强的基于最小的可能性因果网络编译方法","authors":"R. Ayachi, N. B. Amor, S. Benferhat","doi":"10.1109/ICTAI.2011.107","DOIUrl":null,"url":null,"abstract":"This paper emphasizes on handling uncertain and causal information in a min-based possibility theory framework. More precisely, we focus on studying the representational point of view of interventions under a compilation framework. We propose two compilation-based inference algorithms for min-based possibilistic causal networks based on encoding the augmented network into a propositional theory and compiling this output in order to efficiently compute the effect of both observations and interventions.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Augmented-Based Approach for Compiling Min-based Possibilistic Causal Networks\",\"authors\":\"R. Ayachi, N. B. Amor, S. Benferhat\",\"doi\":\"10.1109/ICTAI.2011.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper emphasizes on handling uncertain and causal information in a min-based possibility theory framework. More precisely, we focus on studying the representational point of view of interventions under a compilation framework. We propose two compilation-based inference algorithms for min-based possibilistic causal networks based on encoding the augmented network into a propositional theory and compiling this output in order to efficiently compute the effect of both observations and interventions.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的重点是在基于最小的可能性理论框架下处理不确定性和因果信息。更准确地说,我们专注于研究汇编框架下干预措施的代表性观点。我们提出了两种基于编译的基于最小的可能性因果网络的推理算法,该算法基于将增强网络编码为命题理论并编译该输出,以便有效地计算观察和干预的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Augmented-Based Approach for Compiling Min-based Possibilistic Causal Networks
This paper emphasizes on handling uncertain and causal information in a min-based possibility theory framework. More precisely, we focus on studying the representational point of view of interventions under a compilation framework. We propose two compilation-based inference algorithms for min-based possibilistic causal networks based on encoding the augmented network into a propositional theory and compiling this output in order to efficiently compute the effect of both observations and interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信