{"title":"一种基于增强的基于最小的可能性因果网络编译方法","authors":"R. Ayachi, N. B. Amor, S. Benferhat","doi":"10.1109/ICTAI.2011.107","DOIUrl":null,"url":null,"abstract":"This paper emphasizes on handling uncertain and causal information in a min-based possibility theory framework. More precisely, we focus on studying the representational point of view of interventions under a compilation framework. We propose two compilation-based inference algorithms for min-based possibilistic causal networks based on encoding the augmented network into a propositional theory and compiling this output in order to efficiently compute the effect of both observations and interventions.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Augmented-Based Approach for Compiling Min-based Possibilistic Causal Networks\",\"authors\":\"R. Ayachi, N. B. Amor, S. Benferhat\",\"doi\":\"10.1109/ICTAI.2011.107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper emphasizes on handling uncertain and causal information in a min-based possibility theory framework. More precisely, we focus on studying the representational point of view of interventions under a compilation framework. We propose two compilation-based inference algorithms for min-based possibilistic causal networks based on encoding the augmented network into a propositional theory and compiling this output in order to efficiently compute the effect of both observations and interventions.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Augmented-Based Approach for Compiling Min-based Possibilistic Causal Networks
This paper emphasizes on handling uncertain and causal information in a min-based possibility theory framework. More precisely, we focus on studying the representational point of view of interventions under a compilation framework. We propose two compilation-based inference algorithms for min-based possibilistic causal networks based on encoding the augmented network into a propositional theory and compiling this output in order to efficiently compute the effect of both observations and interventions.