使用无监督语义导向和监督机器学习方法的书评情感分析

Vipin Deep Kaur
{"title":"使用无监督语义导向和监督机器学习方法的书评情感分析","authors":"Vipin Deep Kaur","doi":"10.1109/ICGCIOT.2018.8753089","DOIUrl":null,"url":null,"abstract":"Sentimental analysis aims at identifying the opinions of various users. This paper presents my research work on the application of sentimental analysis on book reviews. I have applied both unsupervised (Semantic Orientation - Pointwise Mutual Information - Information Retrieval) and supervised (Support Vector Machine and Naïve Bayes) machine learning approaches on two openly available book review datasets from GoodReads and Amazon. The comparative analysis of the approaches on the datasets indicates that unsupervised approach performs better on GoodReads dataset with an accuracy of 73.23% whereas supervised approach gives better results on Amazon dataset with Naïve Bayes giving the maximum accuracy which ranges from 73.72% to 74.73% in the case of 5-folds and 10-folds respectively.","PeriodicalId":269682,"journal":{"name":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Sentimental Analysis of Book Reviews using Unsupervised Semantic Orientation and Supervised Machine Learning Approaches\",\"authors\":\"Vipin Deep Kaur\",\"doi\":\"10.1109/ICGCIOT.2018.8753089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sentimental analysis aims at identifying the opinions of various users. This paper presents my research work on the application of sentimental analysis on book reviews. I have applied both unsupervised (Semantic Orientation - Pointwise Mutual Information - Information Retrieval) and supervised (Support Vector Machine and Naïve Bayes) machine learning approaches on two openly available book review datasets from GoodReads and Amazon. The comparative analysis of the approaches on the datasets indicates that unsupervised approach performs better on GoodReads dataset with an accuracy of 73.23% whereas supervised approach gives better results on Amazon dataset with Naïve Bayes giving the maximum accuracy which ranges from 73.72% to 74.73% in the case of 5-folds and 10-folds respectively.\",\"PeriodicalId\":269682,\"journal\":{\"name\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGCIOT.2018.8753089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second International Conference on Green Computing and Internet of Things (ICGCIoT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGCIOT.2018.8753089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

情感分析旨在识别不同用户的观点。本文介绍了笔者在书评中运用情感分析的研究工作。我已经将无监督(语义方向-点间互信息-信息检索)和监督(支持向量机和Naïve贝叶斯)机器学习方法应用于来自GoodReads和Amazon的两个公开可用的书评数据集。两种方法在数据集上的对比分析表明,无监督方法在GoodReads数据集上的准确率为73.23%,而监督方法在Amazon数据集上的准确率为Naïve, Bayes在5倍和10倍的情况下准确率最高,分别为73.72% ~ 74.73%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sentimental Analysis of Book Reviews using Unsupervised Semantic Orientation and Supervised Machine Learning Approaches
Sentimental analysis aims at identifying the opinions of various users. This paper presents my research work on the application of sentimental analysis on book reviews. I have applied both unsupervised (Semantic Orientation - Pointwise Mutual Information - Information Retrieval) and supervised (Support Vector Machine and Naïve Bayes) machine learning approaches on two openly available book review datasets from GoodReads and Amazon. The comparative analysis of the approaches on the datasets indicates that unsupervised approach performs better on GoodReads dataset with an accuracy of 73.23% whereas supervised approach gives better results on Amazon dataset with Naïve Bayes giving the maximum accuracy which ranges from 73.72% to 74.73% in the case of 5-folds and 10-folds respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信