面向基于传感器的稳健机动车辆

F. Large, S. Sekhavat, C. Laugier, E. Gauthier
{"title":"面向基于传感器的稳健机动车辆","authors":"F. Large, S. Sekhavat, C. Laugier, E. Gauthier","doi":"10.1109/ROBOT.2000.845318","DOIUrl":null,"url":null,"abstract":"This paper presents a novel control architecture for a car-like vehicle moving in a dynamic and partially known environment. The key idea is to plan and carry out sensor-based maneuvers. The paper focuses on the reactive part of the architecture that features control experts, i.e., parametrized control programs adapted to a specific maneuver and capable to react in real-time to unforeseen events. This paper aims to show why and how we made use of artificial neural network to improve the performance of our control architecture. Simulation and experimental results obtained with an automatic car are presented to illustrate the advantages of our approach.","PeriodicalId":286422,"journal":{"name":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Towards robust sensor-based maneuvers for a car-like vehicle\",\"authors\":\"F. Large, S. Sekhavat, C. Laugier, E. Gauthier\",\"doi\":\"10.1109/ROBOT.2000.845318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel control architecture for a car-like vehicle moving in a dynamic and partially known environment. The key idea is to plan and carry out sensor-based maneuvers. The paper focuses on the reactive part of the architecture that features control experts, i.e., parametrized control programs adapted to a specific maneuver and capable to react in real-time to unforeseen events. This paper aims to show why and how we made use of artificial neural network to improve the performance of our control architecture. Simulation and experimental results obtained with an automatic car are presented to illustrate the advantages of our approach.\",\"PeriodicalId\":286422,\"journal\":{\"name\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROBOT.2000.845318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROBOT.2000.845318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文提出了一种新的控制体系结构,用于在动态和部分已知环境中移动的类车车辆。关键思想是计划和执行基于传感器的机动。本文关注的是体系结构的反应部分,即控制专家,即适应特定机动并能够实时响应不可预见事件的参数化控制程序。本文旨在说明我们为什么以及如何使用人工神经网络来改善我们的控制体系结构的性能。最后给出了一辆自动驾驶汽车的仿真和实验结果,说明了该方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards robust sensor-based maneuvers for a car-like vehicle
This paper presents a novel control architecture for a car-like vehicle moving in a dynamic and partially known environment. The key idea is to plan and carry out sensor-based maneuvers. The paper focuses on the reactive part of the architecture that features control experts, i.e., parametrized control programs adapted to a specific maneuver and capable to react in real-time to unforeseen events. This paper aims to show why and how we made use of artificial neural network to improve the performance of our control architecture. Simulation and experimental results obtained with an automatic car are presented to illustrate the advantages of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信