Shaofeng Guo, Runsheng Wang, Zhuoqing Yu, P. Hao, P. Ren, Yangyuan Wang, S. Liao, Chunyi Huang, Tianlei Guo, A. Chen, Jushan Xie, Ru Huang
{"title":"面向纳米级FinFET技术的可靠性感知电路设计——新一代老化模型和电路可靠性模拟器","authors":"Shaofeng Guo, Runsheng Wang, Zhuoqing Yu, P. Hao, P. Ren, Yangyuan Wang, S. Liao, Chunyi Huang, Tianlei Guo, A. Chen, Jushan Xie, Ru Huang","doi":"10.1109/ICCAD.2017.8203856","DOIUrl":null,"url":null,"abstract":"In this paper, an industry-level new-generation EDA solution for reliability-aware design in nanoscale FinFET technology is presented for the first time, with new compact transistor aging models and upgraded circuit reliability simulator. Our work solves various issues found in FinFET silicon data of NBTI aging. Especially, instead of ignoring or less accurate NBTI recovery effect model in traditional simulators, accurate NBTI degradation and recovery models are proposed and validated by silicon data for full stress/recovery range in the FinFET technology. The history effect, one of the important features of NBTI which is missing in the existing industrial tools, is included based on new simulation methodology. Since FinFET reliability data suggests the conventional linear extrapolation method is no longer valid, an accurate fast-speed long-term prediction method is proposed based on smart iteration flows of equivalence. The frequency dependence of NBTI, which draws much attention, is included in the new simulator automatically. This work has been integrated into Cadence reliability simulator, providing designers an opportunity for accurate reliability-aware circuit design.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Towards reliability-aware circuit design in nanoscale FinFET technology: — New-generation aging model and circuit reliability simulator\",\"authors\":\"Shaofeng Guo, Runsheng Wang, Zhuoqing Yu, P. Hao, P. Ren, Yangyuan Wang, S. Liao, Chunyi Huang, Tianlei Guo, A. Chen, Jushan Xie, Ru Huang\",\"doi\":\"10.1109/ICCAD.2017.8203856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, an industry-level new-generation EDA solution for reliability-aware design in nanoscale FinFET technology is presented for the first time, with new compact transistor aging models and upgraded circuit reliability simulator. Our work solves various issues found in FinFET silicon data of NBTI aging. Especially, instead of ignoring or less accurate NBTI recovery effect model in traditional simulators, accurate NBTI degradation and recovery models are proposed and validated by silicon data for full stress/recovery range in the FinFET technology. The history effect, one of the important features of NBTI which is missing in the existing industrial tools, is included based on new simulation methodology. Since FinFET reliability data suggests the conventional linear extrapolation method is no longer valid, an accurate fast-speed long-term prediction method is proposed based on smart iteration flows of equivalence. The frequency dependence of NBTI, which draws much attention, is included in the new simulator automatically. This work has been integrated into Cadence reliability simulator, providing designers an opportunity for accurate reliability-aware circuit design.\",\"PeriodicalId\":126686,\"journal\":{\"name\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.2017.8203856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards reliability-aware circuit design in nanoscale FinFET technology: — New-generation aging model and circuit reliability simulator
In this paper, an industry-level new-generation EDA solution for reliability-aware design in nanoscale FinFET technology is presented for the first time, with new compact transistor aging models and upgraded circuit reliability simulator. Our work solves various issues found in FinFET silicon data of NBTI aging. Especially, instead of ignoring or less accurate NBTI recovery effect model in traditional simulators, accurate NBTI degradation and recovery models are proposed and validated by silicon data for full stress/recovery range in the FinFET technology. The history effect, one of the important features of NBTI which is missing in the existing industrial tools, is included based on new simulation methodology. Since FinFET reliability data suggests the conventional linear extrapolation method is no longer valid, an accurate fast-speed long-term prediction method is proposed based on smart iteration flows of equivalence. The frequency dependence of NBTI, which draws much attention, is included in the new simulator automatically. This work has been integrated into Cadence reliability simulator, providing designers an opportunity for accurate reliability-aware circuit design.