论图的连接和电晕的分数匹配数

Arcie S. Nogra, M. P. Baldado
{"title":"论图的连接和电晕的分数匹配数","authors":"Arcie S. Nogra, M. P. Baldado","doi":"10.12988/imf.2019.9418","DOIUrl":null,"url":null,"abstract":"A fractional matching of a graph G = (V,E) is a function f from E to the interval [0, 1] such that ∑ e∈Γ(v) f(e) ≤ 1 for every v ∈ V , where Γ(v) is the set of all edges incident to v. The fractional matching number of G, written α′ ∗(G), is the maximum of ∑ e∈E f(e) over all fractional matchings f . In this paper, we gave the fractional matching number of the join of some graphs, and the corona of some graphs. Mathematics Subject Classification: 05C70 Keyword: integral matching number, fractional matching number, join, corona","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the fractional matching number of the join and corona of graphs\",\"authors\":\"Arcie S. Nogra, M. P. Baldado\",\"doi\":\"10.12988/imf.2019.9418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fractional matching of a graph G = (V,E) is a function f from E to the interval [0, 1] such that ∑ e∈Γ(v) f(e) ≤ 1 for every v ∈ V , where Γ(v) is the set of all edges incident to v. The fractional matching number of G, written α′ ∗(G), is the maximum of ∑ e∈E f(e) over all fractional matchings f . In this paper, we gave the fractional matching number of the join of some graphs, and the corona of some graphs. Mathematics Subject Classification: 05C70 Keyword: integral matching number, fractional matching number, join, corona\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2019.9418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2019.9418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

图G = (V,E)的分数匹配是一个从E到区间[0,1]的函数f,使得∑E∈Γ(V) f(E)≤1,对于每个V∈V,其中Γ(V)是与V相关的所有边的集合。G的分数匹配数,写为α '∗(G),是∑E∈E f(E)在所有分数匹配f上的最大值。本文给出了一些图的连接的分数匹配数,以及一些图的冕。关键词:积分匹配数,分数匹配数,连接,电晕
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the fractional matching number of the join and corona of graphs
A fractional matching of a graph G = (V,E) is a function f from E to the interval [0, 1] such that ∑ e∈Γ(v) f(e) ≤ 1 for every v ∈ V , where Γ(v) is the set of all edges incident to v. The fractional matching number of G, written α′ ∗(G), is the maximum of ∑ e∈E f(e) over all fractional matchings f . In this paper, we gave the fractional matching number of the join of some graphs, and the corona of some graphs. Mathematics Subject Classification: 05C70 Keyword: integral matching number, fractional matching number, join, corona
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信