用超立方并行处理器求解战斗机构型流场的三维欧拉方程

D. Weissbein, J. F. Mangus, M. W. George
{"title":"用超立方并行处理器求解战斗机构型流场的三维欧拉方程","authors":"D. Weissbein, J. F. Mangus, M. W. George","doi":"10.1145/63047.63066","DOIUrl":null,"url":null,"abstract":"The Computational Fluid Dynamics (CFD) code FL057, which solves the 3-D Euler Equations using an explicit, finite volume, Runge-Kutta algorithm, was implemented on an Intel IPSC-MX parallel processor. Spatial decomposition was effected on the solution grid about a fighter aircraft configuration and Binary Reflected Graycodes were used to map the computational domain onto the IPSC insuring nearest neighbor communication. Results and timings of the implementation are presented with a comparison of the IPSC and a uniprocessor machine of similar classification to assess the performance of the IPSC on FL057. Suggested improvements to the current version of the parallelized code are listed to aid load balancing, vectorization, and more efficient memory use.","PeriodicalId":299435,"journal":{"name":"Conference on Hypercube Concurrent Computers and Applications","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1989-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Solution of the 3-D Euler equations for the flow about a fighter aircraft configuration using a hypercube parallel processor\",\"authors\":\"D. Weissbein, J. F. Mangus, M. W. George\",\"doi\":\"10.1145/63047.63066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Computational Fluid Dynamics (CFD) code FL057, which solves the 3-D Euler Equations using an explicit, finite volume, Runge-Kutta algorithm, was implemented on an Intel IPSC-MX parallel processor. Spatial decomposition was effected on the solution grid about a fighter aircraft configuration and Binary Reflected Graycodes were used to map the computational domain onto the IPSC insuring nearest neighbor communication. Results and timings of the implementation are presented with a comparison of the IPSC and a uniprocessor machine of similar classification to assess the performance of the IPSC on FL057. Suggested improvements to the current version of the parallelized code are listed to aid load balancing, vectorization, and more efficient memory use.\",\"PeriodicalId\":299435,\"journal\":{\"name\":\"Conference on Hypercube Concurrent Computers and Applications\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1989-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference on Hypercube Concurrent Computers and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/63047.63066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Hypercube Concurrent Computers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/63047.63066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计算流体动力学(CFD)代码FL057在英特尔IPSC-MX并行处理器上实现,该代码使用显式有限体积龙格-库塔算法求解三维欧拉方程。对某型战斗机构型解网格进行空间分解,利用二值反射灰度码将计算域映射到保证最近邻通信的IPSC上。通过比较IPSC和类似分类的单处理机的实现结果和时间,来评估IPSC在FL057上的性能。本文列出了对当前版本并行化代码的建议改进,以帮助实现负载平衡、向量化和更有效地使用内存。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solution of the 3-D Euler equations for the flow about a fighter aircraft configuration using a hypercube parallel processor
The Computational Fluid Dynamics (CFD) code FL057, which solves the 3-D Euler Equations using an explicit, finite volume, Runge-Kutta algorithm, was implemented on an Intel IPSC-MX parallel processor. Spatial decomposition was effected on the solution grid about a fighter aircraft configuration and Binary Reflected Graycodes were used to map the computational domain onto the IPSC insuring nearest neighbor communication. Results and timings of the implementation are presented with a comparison of the IPSC and a uniprocessor machine of similar classification to assess the performance of the IPSC on FL057. Suggested improvements to the current version of the parallelized code are listed to aid load balancing, vectorization, and more efficient memory use.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信