核电厂风险增加因子预测的复杂网络分析方法

M. Rifi, M. Hibti, R. Kanawati
{"title":"核电厂风险增加因子预测的复杂网络分析方法","authors":"M. Rifi, M. Hibti, R. Kanawati","doi":"10.5220/0006700000230030","DOIUrl":null,"url":null,"abstract":"We explore applying network based metrics to predict safety metrics of components in Nuclear Power Plants (NPP). We first show how to model accident sequences as complex networks, then we conduct a statistical study over the main network metrics to show that these are highly correlated with the RIF (Risk Increase Factor) which is a very popular metric in nuclear safety studies.","PeriodicalId":414016,"journal":{"name":"International Conference on Complex Information Systems","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Complex Network Analysis Approach for Risk Increase Factor Prediction in Nuclear Power Plants\",\"authors\":\"M. Rifi, M. Hibti, R. Kanawati\",\"doi\":\"10.5220/0006700000230030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore applying network based metrics to predict safety metrics of components in Nuclear Power Plants (NPP). We first show how to model accident sequences as complex networks, then we conduct a statistical study over the main network metrics to show that these are highly correlated with the RIF (Risk Increase Factor) which is a very popular metric in nuclear safety studies.\",\"PeriodicalId\":414016,\"journal\":{\"name\":\"International Conference on Complex Information Systems\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Complex Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0006700000230030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Complex Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0006700000230030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们探索应用基于网络的指标来预测核电厂组件的安全指标。我们首先展示了如何将事故序列建模为复杂的网络,然后我们对主要网络指标进行了统计研究,以表明这些指标与RIF(风险增加因子)高度相关,RIF(风险增加因子)是核安全研究中非常流行的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Complex Network Analysis Approach for Risk Increase Factor Prediction in Nuclear Power Plants
We explore applying network based metrics to predict safety metrics of components in Nuclear Power Plants (NPP). We first show how to model accident sequences as complex networks, then we conduct a statistical study over the main network metrics to show that these are highly correlated with the RIF (Risk Increase Factor) which is a very popular metric in nuclear safety studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信