第14章:基于ICA的功能MRI序列组分分离方法的比较研究

G.R. Rad, H. Larijani
{"title":"第14章:基于ICA的功能MRI序列组分分离方法的比较研究","authors":"G.R. Rad, H. Larijani","doi":"10.1109/GMAI.2008.9","DOIUrl":null,"url":null,"abstract":"This paper prepares a review of ICA based approaches that are used for separation of components in functional MRI sequences. In previous works, the FastICA and the Infomax algorithms are investigated in more details; therefore, in this paper we focus on methods such as \"radical ICA\", \"SDD ICA\", \"Erica\" and \"Evd\" for separation purposes. This comparative study provides reliable framework for brain researchers to choose appropriate ICA based method for their special investigation purposes.","PeriodicalId":393559,"journal":{"name":"2008 3rd International Conference on Geometric Modeling and Imaging","volume":"129 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Chapter 14: A Comparative Study of ICA Based Approaches for Separation of Components in Functional MRI Sequences\",\"authors\":\"G.R. Rad, H. Larijani\",\"doi\":\"10.1109/GMAI.2008.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper prepares a review of ICA based approaches that are used for separation of components in functional MRI sequences. In previous works, the FastICA and the Infomax algorithms are investigated in more details; therefore, in this paper we focus on methods such as \\\"radical ICA\\\", \\\"SDD ICA\\\", \\\"Erica\\\" and \\\"Evd\\\" for separation purposes. This comparative study provides reliable framework for brain researchers to choose appropriate ICA based method for their special investigation purposes.\",\"PeriodicalId\":393559,\"journal\":{\"name\":\"2008 3rd International Conference on Geometric Modeling and Imaging\",\"volume\":\"129 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 3rd International Conference on Geometric Modeling and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GMAI.2008.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 3rd International Conference on Geometric Modeling and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GMAI.2008.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文准备了一个基于ICA的方法,用于分离组件的功能MRI序列的审查。在以前的工作中,对FastICA和Infomax算法进行了更详细的研究;因此,本文主要采用“radical ICA”、“SDD ICA”、“Erica”和“Evd”等方法进行分离。这一比较研究为脑研究人员选择适合其特殊研究目的的基于ICA的方法提供了可靠的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chapter 14: A Comparative Study of ICA Based Approaches for Separation of Components in Functional MRI Sequences
This paper prepares a review of ICA based approaches that are used for separation of components in functional MRI sequences. In previous works, the FastICA and the Infomax algorithms are investigated in more details; therefore, in this paper we focus on methods such as "radical ICA", "SDD ICA", "Erica" and "Evd" for separation purposes. This comparative study provides reliable framework for brain researchers to choose appropriate ICA based method for their special investigation purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信