M. Sato, Kai Eto, Tetsuhiro Goto, R. Kurotani, Hiroyuki Abe, I. Nishidate
{"title":"利用短多模光纤探针的全视场光学相干显微镜进行组织成像","authors":"M. Sato, Kai Eto, Tetsuhiro Goto, R. Kurotani, Hiroyuki Abe, I. Nishidate","doi":"10.1117/12.2281404","DOIUrl":null,"url":null,"abstract":"In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.","PeriodicalId":184459,"journal":{"name":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","volume":"504 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tissue imaging using full field optical coherence microscopy with short multimode fiber probe\",\"authors\":\"M. Sato, Kai Eto, Tetsuhiro Goto, R. Kurotani, Hiroyuki Abe, I. Nishidate\",\"doi\":\"10.1117/12.2281404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.\",\"PeriodicalId\":184459,\"journal\":{\"name\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"volume\":\"504 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2281404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canterbury Workshop and School in Optical Coherence Tomography and Adaptive Optics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2281404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tissue imaging using full field optical coherence microscopy with short multimode fiber probe
In achieving minimally invasive accessibility to deeply located regions the size of the imaging probes is important. We demonstrated full-field optical coherence tomography (FF-OCM) using an ultrathin forward-imaging short multimode fiber (SMMF) probe of 50 μm core diameter, 125 μm diameter, and 7.4 mm length for optical communications. The axial resolution was measured to be 2.14 μm and the lateral resolution was also evaluated to be below 4.38 μm using a test pattern (TP). The spatial mode and polarization characteristics of SMMF were evaluated. Inserting SMMF to in vivo rat brain, 3D images were measured and 2D information of nerve fibers was obtained. The feasibility of an SMMF as an ultrathin forward-imaging probe in FF-OCM has been demonstrated.