{"title":"对称锥规划的宽邻域预测校正不可行内点算法","authors":"M. S. Shahraki, H. Mansouri, A. Delavarkhalafi","doi":"10.1080/10556788.2022.2060970","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new predictor–corrector infeasible-interior-point algorithm for symmetric cone programming. Each iterate always follows the usual wide neighbourhood , it does not necessarily stay within it but must stay within the wider neighbourhood . We prove that, besides the predictor step, each corrector step also reduces the duality gap by a rate of , where r is the rank of the associated Euclidean Jordan algebra. Moreover, we improve the theoretical complexity bound of an infeasible-interior-point method. Some numerical results are provided as well.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wide neighbourhood predictor–corrector infeasible-interior-point algorithm for symmetric cone programming\",\"authors\":\"M. S. Shahraki, H. Mansouri, A. Delavarkhalafi\",\"doi\":\"10.1080/10556788.2022.2060970\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new predictor–corrector infeasible-interior-point algorithm for symmetric cone programming. Each iterate always follows the usual wide neighbourhood , it does not necessarily stay within it but must stay within the wider neighbourhood . We prove that, besides the predictor step, each corrector step also reduces the duality gap by a rate of , where r is the rank of the associated Euclidean Jordan algebra. Moreover, we improve the theoretical complexity bound of an infeasible-interior-point method. Some numerical results are provided as well.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"81 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2022.2060970\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2060970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A wide neighbourhood predictor–corrector infeasible-interior-point algorithm for symmetric cone programming
In this paper, we propose a new predictor–corrector infeasible-interior-point algorithm for symmetric cone programming. Each iterate always follows the usual wide neighbourhood , it does not necessarily stay within it but must stay within the wider neighbourhood . We prove that, besides the predictor step, each corrector step also reduces the duality gap by a rate of , where r is the rank of the associated Euclidean Jordan algebra. Moreover, we improve the theoretical complexity bound of an infeasible-interior-point method. Some numerical results are provided as well.