基于Cat群算法优化的支持向量机入侵检测系统

S. Idris, O. Oyefolahan Ishaq, N. Ndunagu Juliana
{"title":"基于Cat群算法优化的支持向量机入侵检测系统","authors":"S. Idris, O. Oyefolahan Ishaq, N. Ndunagu Juliana","doi":"10.1109/NigeriaComputConf45974.2019.8949676","DOIUrl":null,"url":null,"abstract":"intrusion detection system (IDS) like firewall, access control and encryption mechanisms no longer provide the much-needed security for systems and computer networks. Current IDS are developed on anomaly detection which helps to detect known and unknown attacks. Though, these anomaly-based IDS feature a high false rate. To reduce this false alarm rate, in this paper, we proposed an intrusion detection model based on support vector machine (SVM) optimized with Cat swarm optimization (CSO) algorithm. We use the information gain (IG) for attribute reduction and perform classification using the optimized Support vector. The result obtained shows that our model performs well with the least false alarm rate and good accuracy value compare with other classification algorithms evaluated using the same datasets.","PeriodicalId":228657,"journal":{"name":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Intrusion Detection System Based on Support Vector Machine Optimised with Cat Swarm Optimization Algorithm\",\"authors\":\"S. Idris, O. Oyefolahan Ishaq, N. Ndunagu Juliana\",\"doi\":\"10.1109/NigeriaComputConf45974.2019.8949676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"intrusion detection system (IDS) like firewall, access control and encryption mechanisms no longer provide the much-needed security for systems and computer networks. Current IDS are developed on anomaly detection which helps to detect known and unknown attacks. Though, these anomaly-based IDS feature a high false rate. To reduce this false alarm rate, in this paper, we proposed an intrusion detection model based on support vector machine (SVM) optimized with Cat swarm optimization (CSO) algorithm. We use the information gain (IG) for attribute reduction and perform classification using the optimized Support vector. The result obtained shows that our model performs well with the least false alarm rate and good accuracy value compare with other classification algorithms evaluated using the same datasets.\",\"PeriodicalId\":228657,\"journal\":{\"name\":\"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949676\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference of the IEEE Nigeria Computer Chapter (NigeriaComputConf)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NigeriaComputConf45974.2019.8949676","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

入侵检测系统(IDS),如防火墙、访问控制和加密机制,不再为系统和计算机网络提供急需的安全保障。当前的入侵检测系统主要是基于异常检测来检测已知和未知的攻击。但是,这些基于异常的IDS具有很高的错误率。为了降低虚警率,本文提出了一种基于Cat群优化算法优化的支持向量机(SVM)入侵检测模型。我们使用信息增益(IG)进行属性约简,并使用优化后的支持向量进行分类。结果表明,与使用相同数据集评估的其他分类算法相比,我们的模型具有最低的虚警率和良好的准确率值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion Detection System Based on Support Vector Machine Optimised with Cat Swarm Optimization Algorithm
intrusion detection system (IDS) like firewall, access control and encryption mechanisms no longer provide the much-needed security for systems and computer networks. Current IDS are developed on anomaly detection which helps to detect known and unknown attacks. Though, these anomaly-based IDS feature a high false rate. To reduce this false alarm rate, in this paper, we proposed an intrusion detection model based on support vector machine (SVM) optimized with Cat swarm optimization (CSO) algorithm. We use the information gain (IG) for attribute reduction and perform classification using the optimized Support vector. The result obtained shows that our model performs well with the least false alarm rate and good accuracy value compare with other classification algorithms evaluated using the same datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信