使用自定义模糊同义词库合并语义并减少Twitter情感分析的数据稀疏性

Heba M. Ismail, Nazar Zaki, B. Belkhouche
{"title":"使用自定义模糊同义词库合并语义并减少Twitter情感分析的数据稀疏性","authors":"Heba M. Ismail, Nazar Zaki, B. Belkhouche","doi":"10.1109/ISCMI.2016.56","DOIUrl":null,"url":null,"abstract":"Considerable research efforts have been devoted to Twitter sentiment analysis in recent years. Given the informal writing style of Twitter, there exists an endless variety of sound vocabulary, slogans, emoticons and special characters that can be used to express one's opinion in a maximum of 140-characters. This results in a sparsity problem making the training of machine learning classifiers from Twitter data a highly challenging task. In this work we propose using sentiment replacement of Twitter slogans and incorporating a fuzzy thesaurus for twitter sentiment classification in order to incorporate semantic as well as solve the sparsity problem. The experimental results show that the proposed method consistently outperforms the baselines in addition to some methods in the literature.","PeriodicalId":417057,"journal":{"name":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","volume":"230 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Using Custom Fuzzy Thesaurus to Incorporate Semantic and Reduce Data Sparsity for Twitter Sentiment Analysis\",\"authors\":\"Heba M. Ismail, Nazar Zaki, B. Belkhouche\",\"doi\":\"10.1109/ISCMI.2016.56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Considerable research efforts have been devoted to Twitter sentiment analysis in recent years. Given the informal writing style of Twitter, there exists an endless variety of sound vocabulary, slogans, emoticons and special characters that can be used to express one's opinion in a maximum of 140-characters. This results in a sparsity problem making the training of machine learning classifiers from Twitter data a highly challenging task. In this work we propose using sentiment replacement of Twitter slogans and incorporating a fuzzy thesaurus for twitter sentiment classification in order to incorporate semantic as well as solve the sparsity problem. The experimental results show that the proposed method consistently outperforms the baselines in addition to some methods in the literature.\",\"PeriodicalId\":417057,\"journal\":{\"name\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"volume\":\"230 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCMI.2016.56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 3rd International Conference on Soft Computing & Machine Intelligence (ISCMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCMI.2016.56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

近年来,人们对Twitter情绪分析进行了大量的研究。考虑到Twitter的非正式写作风格,Twitter上有各种各样的有声词汇、口号、表情符号和特殊字符,人们可以用最多140个字符来表达自己的观点。这导致了稀疏性问题,使得从Twitter数据中训练机器学习分类器成为一项极具挑战性的任务。在这项工作中,我们提出使用Twitter口号的情感替换,并结合模糊同义词库进行Twitter情感分类,以结合语义并解决稀疏性问题。实验结果表明,除了文献中的一些方法外,所提出的方法始终优于基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using Custom Fuzzy Thesaurus to Incorporate Semantic and Reduce Data Sparsity for Twitter Sentiment Analysis
Considerable research efforts have been devoted to Twitter sentiment analysis in recent years. Given the informal writing style of Twitter, there exists an endless variety of sound vocabulary, slogans, emoticons and special characters that can be used to express one's opinion in a maximum of 140-characters. This results in a sparsity problem making the training of machine learning classifiers from Twitter data a highly challenging task. In this work we propose using sentiment replacement of Twitter slogans and incorporating a fuzzy thesaurus for twitter sentiment classification in order to incorporate semantic as well as solve the sparsity problem. The experimental results show that the proposed method consistently outperforms the baselines in addition to some methods in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信