Zhao Ru-tao, Wang Jing, Chen Gao-jian, Li Qian-wen, Yuan Yun-jing
{"title":"数据分析的机器学习管道生成方法","authors":"Zhao Ru-tao, Wang Jing, Chen Gao-jian, Li Qian-wen, Yuan Yun-jing","doi":"10.1109/ICCC51575.2020.9345123","DOIUrl":null,"url":null,"abstract":"Data analysis requires a high level of expertise for domain workers, and AutoML aims to make these decisions in an automated way. But it is still a difficult problem to automatically generate machine learning pipelines with high performance in acceptable time. This paper presents a DFSR (Data Feature and Service Association) approach to automatically generating machine learning pipelines utilizing data features and service associations. The experimental results showed that the performance of the generated pipelines reached the satisfactory level of current AutoML tools, and the time consumption is reduced to the minute level.","PeriodicalId":386048,"journal":{"name":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Machine Learning Pipeline Generation Approach for Data Analysis\",\"authors\":\"Zhao Ru-tao, Wang Jing, Chen Gao-jian, Li Qian-wen, Yuan Yun-jing\",\"doi\":\"10.1109/ICCC51575.2020.9345123\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data analysis requires a high level of expertise for domain workers, and AutoML aims to make these decisions in an automated way. But it is still a difficult problem to automatically generate machine learning pipelines with high performance in acceptable time. This paper presents a DFSR (Data Feature and Service Association) approach to automatically generating machine learning pipelines utilizing data features and service associations. The experimental results showed that the performance of the generated pipelines reached the satisfactory level of current AutoML tools, and the time consumption is reduced to the minute level.\",\"PeriodicalId\":386048,\"journal\":{\"name\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 6th International Conference on Computer and Communications (ICCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCC51575.2020.9345123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 6th International Conference on Computer and Communications (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCC51575.2020.9345123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Machine Learning Pipeline Generation Approach for Data Analysis
Data analysis requires a high level of expertise for domain workers, and AutoML aims to make these decisions in an automated way. But it is still a difficult problem to automatically generate machine learning pipelines with high performance in acceptable time. This paper presents a DFSR (Data Feature and Service Association) approach to automatically generating machine learning pipelines utilizing data features and service associations. The experimental results showed that the performance of the generated pipelines reached the satisfactory level of current AutoML tools, and the time consumption is reduced to the minute level.