自动目标识别的隐马尔可夫建模

D. Kottke, Jong-Kae Fwu, K. Brown
{"title":"自动目标识别的隐马尔可夫建模","authors":"D. Kottke, Jong-Kae Fwu, K. Brown","doi":"10.1109/ACSSC.1997.680565","DOIUrl":null,"url":null,"abstract":"A novel approach for applying hidden Markov models (HMM) to automatic target recognition (ATR) is proposed. The HMM-ATR captures target and background appearance variability by exploiting flexible statistical models. The method utilizes an unsupervised training procedure to estimate the statistical model parameters. Experiments upon a synthetic aperture radar (SAR) database were performed to test robustness over range of target pose, variation in target to background contrast, and mismatches in training and testing conditions. The results are compared against a template matching approach. The HMM captures target appearance variability well and significantly outperforms template matching in both robustness and flexibility.","PeriodicalId":240431,"journal":{"name":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Hidden Markov modeling for automatic target recognition\",\"authors\":\"D. Kottke, Jong-Kae Fwu, K. Brown\",\"doi\":\"10.1109/ACSSC.1997.680565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel approach for applying hidden Markov models (HMM) to automatic target recognition (ATR) is proposed. The HMM-ATR captures target and background appearance variability by exploiting flexible statistical models. The method utilizes an unsupervised training procedure to estimate the statistical model parameters. Experiments upon a synthetic aperture radar (SAR) database were performed to test robustness over range of target pose, variation in target to background contrast, and mismatches in training and testing conditions. The results are compared against a template matching approach. The HMM captures target appearance variability well and significantly outperforms template matching in both robustness and flexibility.\",\"PeriodicalId\":240431,\"journal\":{\"name\":\"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.1997.680565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-First Asilomar Conference on Signals, Systems and Computers (Cat. No.97CB36136)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.1997.680565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

提出了一种将隐马尔可夫模型应用于自动目标识别的新方法。HMM-ATR通过利用灵活的统计模型捕获目标和背景的外观变化。该方法利用无监督训练过程来估计统计模型参数。在合成孔径雷达(SAR)数据库上进行了实验,测试了目标姿态范围、目标与背景对比度变化以及训练和测试条件下的不匹配情况下的鲁棒性。结果与模板匹配方法进行了比较。HMM可以很好地捕获目标的外观变化,并且在鲁棒性和灵活性方面都明显优于模板匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hidden Markov modeling for automatic target recognition
A novel approach for applying hidden Markov models (HMM) to automatic target recognition (ATR) is proposed. The HMM-ATR captures target and background appearance variability by exploiting flexible statistical models. The method utilizes an unsupervised training procedure to estimate the statistical model parameters. Experiments upon a synthetic aperture radar (SAR) database were performed to test robustness over range of target pose, variation in target to background contrast, and mismatches in training and testing conditions. The results are compared against a template matching approach. The HMM captures target appearance variability well and significantly outperforms template matching in both robustness and flexibility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信