深度信念网络训练中有限精度算法的动态点随机舍入算法

M. Essam, T. Tang, Eric Tatt Wei Ho, Hsin Chen
{"title":"深度信念网络训练中有限精度算法的动态点随机舍入算法","authors":"M. Essam, T. Tang, Eric Tatt Wei Ho, Hsin Chen","doi":"10.1109/NER.2017.8008430","DOIUrl":null,"url":null,"abstract":"This paper reports how to train a Deep Belief Network (DBN) using only 8-bit fixed-point parameters. We propose a dynamic-point stochastic rounding algorithm that provides enhanced results compared to the existing stochastic rounding. We show that by using a variable scaling factor, the fixed-point parameter updates are enhanced. To be more hardware amenable, the use of common scaling factor at each layer of DBN is further proposed. Using publicly available MNIST database, we show that the proposed algorithm can train a 3-layer DBN with an average accuracy of 98.49%, with a drop of 0.08% from the double floating-point average accuracy.","PeriodicalId":142883,"journal":{"name":"2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Dynamic point stochastic rounding algorithm for limited precision arithmetic in Deep Belief Network training\",\"authors\":\"M. Essam, T. Tang, Eric Tatt Wei Ho, Hsin Chen\",\"doi\":\"10.1109/NER.2017.8008430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports how to train a Deep Belief Network (DBN) using only 8-bit fixed-point parameters. We propose a dynamic-point stochastic rounding algorithm that provides enhanced results compared to the existing stochastic rounding. We show that by using a variable scaling factor, the fixed-point parameter updates are enhanced. To be more hardware amenable, the use of common scaling factor at each layer of DBN is further proposed. Using publicly available MNIST database, we show that the proposed algorithm can train a 3-layer DBN with an average accuracy of 98.49%, with a drop of 0.08% from the double floating-point average accuracy.\",\"PeriodicalId\":142883,\"journal\":{\"name\":\"2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"volume\":\"136 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NER.2017.8008430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 8th International IEEE/EMBS Conference on Neural Engineering (NER)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NER.2017.8008430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文报道了如何只用8位不动点参数训练深度信念网络(DBN)。我们提出了一种动态点随机舍入算法,与现有的随机舍入相比,它提供了更好的结果。通过使用可变比例因子,我们证明了定点参数的更新是增强的。为了更好地适应硬件,进一步提出在DBN的每一层使用公共比例因子。使用公开的MNIST数据库,我们表明该算法可以训练3层DBN,平均准确率为98.49%,比双浮点平均准确率下降0.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic point stochastic rounding algorithm for limited precision arithmetic in Deep Belief Network training
This paper reports how to train a Deep Belief Network (DBN) using only 8-bit fixed-point parameters. We propose a dynamic-point stochastic rounding algorithm that provides enhanced results compared to the existing stochastic rounding. We show that by using a variable scaling factor, the fixed-point parameter updates are enhanced. To be more hardware amenable, the use of common scaling factor at each layer of DBN is further proposed. Using publicly available MNIST database, we show that the proposed algorithm can train a 3-layer DBN with an average accuracy of 98.49%, with a drop of 0.08% from the double floating-point average accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信