{"title":"高压二极管在短路时的稳健性","authors":"Jan Fuhrmann, David Hammes, H. Eckel","doi":"10.23919/ISPSD.2017.7988929","DOIUrl":null,"url":null,"abstract":"A harsh high-voltage diode commutation as a result of a short circuit can destroy the diode. The ruggedness of the diode is given by the cathode design which can suppress an cathode-side filament. Measurements on 3.3-kV and 6.5-kV diodes with and without improved cathode design show the diode behavior during the short. The results are compared and similarities are found. Without an improved cathode a failure in succession of a cathode-side filament can be observed. This behavior is simulated and confirms the destruction mechanism.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-voltage diode robustness during short-circuit type III\",\"authors\":\"Jan Fuhrmann, David Hammes, H. Eckel\",\"doi\":\"10.23919/ISPSD.2017.7988929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A harsh high-voltage diode commutation as a result of a short circuit can destroy the diode. The ruggedness of the diode is given by the cathode design which can suppress an cathode-side filament. Measurements on 3.3-kV and 6.5-kV diodes with and without improved cathode design show the diode behavior during the short. The results are compared and similarities are found. Without an improved cathode a failure in succession of a cathode-side filament can be observed. This behavior is simulated and confirms the destruction mechanism.\",\"PeriodicalId\":202561,\"journal\":{\"name\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ISPSD.2017.7988929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-voltage diode robustness during short-circuit type III
A harsh high-voltage diode commutation as a result of a short circuit can destroy the diode. The ruggedness of the diode is given by the cathode design which can suppress an cathode-side filament. Measurements on 3.3-kV and 6.5-kV diodes with and without improved cathode design show the diode behavior during the short. The results are compared and similarities are found. Without an improved cathode a failure in succession of a cathode-side filament can be observed. This behavior is simulated and confirms the destruction mechanism.