K. Hasegawa, Kai Fukami, Takaaki Murata, K. Fukagata
{"title":"不同形状二维钝体周围流动的数据驱动降阶建模","authors":"K. Hasegawa, Kai Fukami, Takaaki Murata, K. Fukagata","doi":"10.1115/ajkfluids2019-5079","DOIUrl":null,"url":null,"abstract":"\n We propose a reduced order model for predicting unsteady flows using a data-driven method. As preliminary tests, we use two-dimensional unsteady flow around bluff bodies with different shapes as the training datasets obtained by direct numerical simulation (DNS). Our machine-learned architecture consists of two parts: Convolutional Neural Network-based AutoEncoder (CNN-AE) and Long Short Term Memory (LSTM), respectively. First, CNN-AE is used to map into a low-dimensional space from the flow field data. Then, LSTM is employed to predict the temporal evolution of the low-dimensional data generated by CNN-AE. Proposed machine-learned reduced order model is applied to two-dimensional circular cylinder flows at various Reynolds numbers and flows around bluff bodies of various shapes. The flow fields reconstructed by the machine-learned architecture show reasonable agreement with the reference DNS data. Furthermore, it can be seen that our machine-learned reduced order model can successfully map the high-dimensional flow data into low-dimensional field and predict the flow fields against unknown Reynolds number fields and shapes of bluff body. As concluding remarks, we discuss the extension study of machine-learned reduced order modeling for various applications in experimental and computational fluid dynamics.","PeriodicalId":346736,"journal":{"name":"Volume 2: Computational Fluid Dynamics","volume":"128 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Data-Driven Reduced Order Modeling of Flows Around Two-Dimensional Bluff Bodies of Various Shapes\",\"authors\":\"K. Hasegawa, Kai Fukami, Takaaki Murata, K. Fukagata\",\"doi\":\"10.1115/ajkfluids2019-5079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We propose a reduced order model for predicting unsteady flows using a data-driven method. As preliminary tests, we use two-dimensional unsteady flow around bluff bodies with different shapes as the training datasets obtained by direct numerical simulation (DNS). Our machine-learned architecture consists of two parts: Convolutional Neural Network-based AutoEncoder (CNN-AE) and Long Short Term Memory (LSTM), respectively. First, CNN-AE is used to map into a low-dimensional space from the flow field data. Then, LSTM is employed to predict the temporal evolution of the low-dimensional data generated by CNN-AE. Proposed machine-learned reduced order model is applied to two-dimensional circular cylinder flows at various Reynolds numbers and flows around bluff bodies of various shapes. The flow fields reconstructed by the machine-learned architecture show reasonable agreement with the reference DNS data. Furthermore, it can be seen that our machine-learned reduced order model can successfully map the high-dimensional flow data into low-dimensional field and predict the flow fields against unknown Reynolds number fields and shapes of bluff body. As concluding remarks, we discuss the extension study of machine-learned reduced order modeling for various applications in experimental and computational fluid dynamics.\",\"PeriodicalId\":346736,\"journal\":{\"name\":\"Volume 2: Computational Fluid Dynamics\",\"volume\":\"128 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Computational Fluid Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/ajkfluids2019-5079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Computational Fluid Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/ajkfluids2019-5079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-Driven Reduced Order Modeling of Flows Around Two-Dimensional Bluff Bodies of Various Shapes
We propose a reduced order model for predicting unsteady flows using a data-driven method. As preliminary tests, we use two-dimensional unsteady flow around bluff bodies with different shapes as the training datasets obtained by direct numerical simulation (DNS). Our machine-learned architecture consists of two parts: Convolutional Neural Network-based AutoEncoder (CNN-AE) and Long Short Term Memory (LSTM), respectively. First, CNN-AE is used to map into a low-dimensional space from the flow field data. Then, LSTM is employed to predict the temporal evolution of the low-dimensional data generated by CNN-AE. Proposed machine-learned reduced order model is applied to two-dimensional circular cylinder flows at various Reynolds numbers and flows around bluff bodies of various shapes. The flow fields reconstructed by the machine-learned architecture show reasonable agreement with the reference DNS data. Furthermore, it can be seen that our machine-learned reduced order model can successfully map the high-dimensional flow data into low-dimensional field and predict the flow fields against unknown Reynolds number fields and shapes of bluff body. As concluding remarks, we discuss the extension study of machine-learned reduced order modeling for various applications in experimental and computational fluid dynamics.