在大数据环境下基于哈希和隐私的电影推荐

Tingting Shao, Xuening Chen
{"title":"在大数据环境下基于哈希和隐私的电影推荐","authors":"Tingting Shao, Xuening Chen","doi":"10.1504/ijes.2020.10025052","DOIUrl":null,"url":null,"abstract":"Movie recommendation is an important activity in the people's daily entertainment. Typically, through analysing the users' ever-watched movie list, a movie recommender system can recommend appropriate new movies to the target user. However, traditional movie recommendation techniques, e.g., collaborative filtering (CF) often face the following two challenges. First, as CF is essentially a traversal technique, the recommendation efficiency is often low. Second, traditional movie recommender systems often assume that the users' ever-watched movie list for decision-making is centralised, which makes it hard to be applied to the distributed movie recommendation scenarios. In view of these challenges, in this paper, we bring forth an efficient and privacy-aware online movie recommendation approach based on hashing technique. Through experiments on famous MovieLens dataset, we show that our proposal shows a better performance compared with other approaches in terms of recommendation efficiency and accuracy while users' private information is protected.","PeriodicalId":412308,"journal":{"name":"Int. J. Embed. Syst.","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hash-based and privacy-aware movie recommendations in a big data environment\",\"authors\":\"Tingting Shao, Xuening Chen\",\"doi\":\"10.1504/ijes.2020.10025052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Movie recommendation is an important activity in the people's daily entertainment. Typically, through analysing the users' ever-watched movie list, a movie recommender system can recommend appropriate new movies to the target user. However, traditional movie recommendation techniques, e.g., collaborative filtering (CF) often face the following two challenges. First, as CF is essentially a traversal technique, the recommendation efficiency is often low. Second, traditional movie recommender systems often assume that the users' ever-watched movie list for decision-making is centralised, which makes it hard to be applied to the distributed movie recommendation scenarios. In view of these challenges, in this paper, we bring forth an efficient and privacy-aware online movie recommendation approach based on hashing technique. Through experiments on famous MovieLens dataset, we show that our proposal shows a better performance compared with other approaches in terms of recommendation efficiency and accuracy while users' private information is protected.\",\"PeriodicalId\":412308,\"journal\":{\"name\":\"Int. J. Embed. Syst.\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Embed. Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijes.2020.10025052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Embed. Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijes.2020.10025052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

电影推荐是人们日常娱乐活动中的一项重要活动。一般来说,电影推荐系统通过分析用户看过的电影列表,向目标用户推荐合适的新电影。然而,传统的电影推荐技术,如协同过滤(CF),往往面临以下两个挑战。首先,由于CF本质上是一种遍历技术,因此推荐效率通常较低。其次,传统的电影推荐系统通常假设用户看过的电影列表是集中的,这使得它很难应用于分布式的电影推荐场景。针对这些挑战,本文提出了一种基于哈希技术的高效且具有隐私意识的在线电影推荐方法。通过在著名的MovieLens数据集上的实验,我们证明了我们的建议在保护用户隐私信息的情况下,在推荐效率和准确率方面都比其他方法有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hash-based and privacy-aware movie recommendations in a big data environment
Movie recommendation is an important activity in the people's daily entertainment. Typically, through analysing the users' ever-watched movie list, a movie recommender system can recommend appropriate new movies to the target user. However, traditional movie recommendation techniques, e.g., collaborative filtering (CF) often face the following two challenges. First, as CF is essentially a traversal technique, the recommendation efficiency is often low. Second, traditional movie recommender systems often assume that the users' ever-watched movie list for decision-making is centralised, which makes it hard to be applied to the distributed movie recommendation scenarios. In view of these challenges, in this paper, we bring forth an efficient and privacy-aware online movie recommendation approach based on hashing technique. Through experiments on famous MovieLens dataset, we show that our proposal shows a better performance compared with other approaches in terms of recommendation efficiency and accuracy while users' private information is protected.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信