Yangyang Zhang, Jianxin Li, Yiming Zhang, Lijie Wang, Ling Liu
{"title":"参数服务器的无损故障恢复与超轻复制","authors":"Yangyang Zhang, Jianxin Li, Yiming Zhang, Lijie Wang, Ling Liu","doi":"10.1109/ICDCS51616.2021.00052","DOIUrl":null,"url":null,"abstract":"Modern distributed machine learning (ML) systems leverage large-scale computing infrastructures to achieve fast model training. For many servers jointly training a model, failure recovery becomes an important challenge when a training task could be accomplished in minutes rather than days. The state-of-the-art checkpointing mechanism cannot meet the need of efficient recovery for large-scale ML, because its high cost prevents timely checkpointing and a server failure will likely cause a substantial loss of intermediate results when the checkpointing intervals are comparable to the entire training times. This paper proposes FreeLauncher (FLR), a lossless recovery mechanism for large-scale ML which performs ultralight replication (instead of checkpointing) to guarantee all intermediate training results (parameters) to be timely replicated. Our key insight is that in the parameter-server (PS) architecture there already exist multiple copies for each intermediate result not only in the server but also in the workers, most of which are qualified for failure recovery. FLR addresses the challenges of parameter sparsity (e.g., when training LDA) and staleness (e.g., when adopting relaxed consistency) by selectively replicating the latest copies of the sparse/stale parameters to ensure at least k up-to-date copies to be existent, which can handle any k-1 failures by re-launching the failed servers with recovered parameters from workers. We implement FLR on Tensorflow. Evaluation results show that FLR achieves lossless failure recovery (almost requiring no recomputation) at little cost.","PeriodicalId":222376,"journal":{"name":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FreeLauncher: Lossless Failure Recovery of Parameter Servers with Ultralight Replication\",\"authors\":\"Yangyang Zhang, Jianxin Li, Yiming Zhang, Lijie Wang, Ling Liu\",\"doi\":\"10.1109/ICDCS51616.2021.00052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modern distributed machine learning (ML) systems leverage large-scale computing infrastructures to achieve fast model training. For many servers jointly training a model, failure recovery becomes an important challenge when a training task could be accomplished in minutes rather than days. The state-of-the-art checkpointing mechanism cannot meet the need of efficient recovery for large-scale ML, because its high cost prevents timely checkpointing and a server failure will likely cause a substantial loss of intermediate results when the checkpointing intervals are comparable to the entire training times. This paper proposes FreeLauncher (FLR), a lossless recovery mechanism for large-scale ML which performs ultralight replication (instead of checkpointing) to guarantee all intermediate training results (parameters) to be timely replicated. Our key insight is that in the parameter-server (PS) architecture there already exist multiple copies for each intermediate result not only in the server but also in the workers, most of which are qualified for failure recovery. FLR addresses the challenges of parameter sparsity (e.g., when training LDA) and staleness (e.g., when adopting relaxed consistency) by selectively replicating the latest copies of the sparse/stale parameters to ensure at least k up-to-date copies to be existent, which can handle any k-1 failures by re-launching the failed servers with recovered parameters from workers. We implement FLR on Tensorflow. Evaluation results show that FLR achieves lossless failure recovery (almost requiring no recomputation) at little cost.\",\"PeriodicalId\":222376,\"journal\":{\"name\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDCS51616.2021.00052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS51616.2021.00052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
FreeLauncher: Lossless Failure Recovery of Parameter Servers with Ultralight Replication
Modern distributed machine learning (ML) systems leverage large-scale computing infrastructures to achieve fast model training. For many servers jointly training a model, failure recovery becomes an important challenge when a training task could be accomplished in minutes rather than days. The state-of-the-art checkpointing mechanism cannot meet the need of efficient recovery for large-scale ML, because its high cost prevents timely checkpointing and a server failure will likely cause a substantial loss of intermediate results when the checkpointing intervals are comparable to the entire training times. This paper proposes FreeLauncher (FLR), a lossless recovery mechanism for large-scale ML which performs ultralight replication (instead of checkpointing) to guarantee all intermediate training results (parameters) to be timely replicated. Our key insight is that in the parameter-server (PS) architecture there already exist multiple copies for each intermediate result not only in the server but also in the workers, most of which are qualified for failure recovery. FLR addresses the challenges of parameter sparsity (e.g., when training LDA) and staleness (e.g., when adopting relaxed consistency) by selectively replicating the latest copies of the sparse/stale parameters to ensure at least k up-to-date copies to be existent, which can handle any k-1 failures by re-launching the failed servers with recovered parameters from workers. We implement FLR on Tensorflow. Evaluation results show that FLR achieves lossless failure recovery (almost requiring no recomputation) at little cost.