Leilei Meng, Xin Su, Xuewu Zhang, Chang Choi, Dongmin Choi
{"title":"在NOMA下行链路中用于连续干扰消除的信号接收","authors":"Leilei Meng, Xin Su, Xuewu Zhang, Chang Choi, Dongmin Choi","doi":"10.1145/3264746.3264751","DOIUrl":null,"url":null,"abstract":"Successive interference cancellation (SIC) receiver is adopted by power domain non-orthogonal multiple access (NOMA) at the receiver side as the baseline receiver scheme taking the forthcoming expected mobile device evolution into account. Development technologies and advanced techniques are boldly being considered in order to achieve power saving in many networks, to reach sustainability and reliability in communication due to envisioned huge amount of data delivery. In this paper, we propose a novel scheme of NOMA-SIC for the sake of balancing the trade-off between system performance and complexity. In the proposed scheme, each SIC level is comprised by a matching filter (MF), a MF detector and a regenerator. In simulations, the proposed scheme demonstrates the best performance on power saving, of which energy efficiency increases with an increase in the number of NOMA device pairs.","PeriodicalId":186790,"journal":{"name":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Signal reception for successive interference cancellation in NOMA downlink\",\"authors\":\"Leilei Meng, Xin Su, Xuewu Zhang, Chang Choi, Dongmin Choi\",\"doi\":\"10.1145/3264746.3264751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Successive interference cancellation (SIC) receiver is adopted by power domain non-orthogonal multiple access (NOMA) at the receiver side as the baseline receiver scheme taking the forthcoming expected mobile device evolution into account. Development technologies and advanced techniques are boldly being considered in order to achieve power saving in many networks, to reach sustainability and reliability in communication due to envisioned huge amount of data delivery. In this paper, we propose a novel scheme of NOMA-SIC for the sake of balancing the trade-off between system performance and complexity. In the proposed scheme, each SIC level is comprised by a matching filter (MF), a MF detector and a regenerator. In simulations, the proposed scheme demonstrates the best performance on power saving, of which energy efficiency increases with an increase in the number of NOMA device pairs.\",\"PeriodicalId\":186790,\"journal\":{\"name\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3264746.3264751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3264746.3264751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal reception for successive interference cancellation in NOMA downlink
Successive interference cancellation (SIC) receiver is adopted by power domain non-orthogonal multiple access (NOMA) at the receiver side as the baseline receiver scheme taking the forthcoming expected mobile device evolution into account. Development technologies and advanced techniques are boldly being considered in order to achieve power saving in many networks, to reach sustainability and reliability in communication due to envisioned huge amount of data delivery. In this paper, we propose a novel scheme of NOMA-SIC for the sake of balancing the trade-off between system performance and complexity. In the proposed scheme, each SIC level is comprised by a matching filter (MF), a MF detector and a regenerator. In simulations, the proposed scheme demonstrates the best performance on power saving, of which energy efficiency increases with an increase in the number of NOMA device pairs.