基于生成对抗网络的跨语言语音转换研究

Berrak Sisman, Mingyang Zhang, M. Dong, Haizhou Li
{"title":"基于生成对抗网络的跨语言语音转换研究","authors":"Berrak Sisman, Mingyang Zhang, M. Dong, Haizhou Li","doi":"10.1109/ASRU46091.2019.9003939","DOIUrl":null,"url":null,"abstract":"Cross-lingual voice conversion (VC) aims to convert the source speaker's voice to sound like that of the target speaker, when the source and target speakers speak different languages. In this paper, we propose to use Generative Adversarial Networks (GANs) for cross-lingual voice-conversion. We further the studies on Variational Autoencoding Wasserstein GAN (VAW-GAN) and cycle-consistent adversarial network (CycleGAN), that are known to be effective for mono-lingual voice conversion. As cross-lingual voice conversion needs to converts the voice across different phonetic system, it is more challenging than mono-lingual voice conversion. By using VAW-GAN and CycleGAN, we successfully convert the speaker identity while carrying over the source speaker's linguistic content. The proposed idea is unique in the sense that it neither relies on bilingual data and their alignment, nor any external process, such as ASR. Moreover, it works with limited amount of training data of any two languages. To our best knowledge, this is the first comprehensive study of Generative Adversarial Networks in cross-lingual voice conversion. In the experiments, we achieve high-quality converted voice, that performs equally well or better than mono-lingual voice conversion.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"On the Study of Generative Adversarial Networks for Cross-Lingual Voice Conversion\",\"authors\":\"Berrak Sisman, Mingyang Zhang, M. Dong, Haizhou Li\",\"doi\":\"10.1109/ASRU46091.2019.9003939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cross-lingual voice conversion (VC) aims to convert the source speaker's voice to sound like that of the target speaker, when the source and target speakers speak different languages. In this paper, we propose to use Generative Adversarial Networks (GANs) for cross-lingual voice-conversion. We further the studies on Variational Autoencoding Wasserstein GAN (VAW-GAN) and cycle-consistent adversarial network (CycleGAN), that are known to be effective for mono-lingual voice conversion. As cross-lingual voice conversion needs to converts the voice across different phonetic system, it is more challenging than mono-lingual voice conversion. By using VAW-GAN and CycleGAN, we successfully convert the speaker identity while carrying over the source speaker's linguistic content. The proposed idea is unique in the sense that it neither relies on bilingual data and their alignment, nor any external process, such as ASR. Moreover, it works with limited amount of training data of any two languages. To our best knowledge, this is the first comprehensive study of Generative Adversarial Networks in cross-lingual voice conversion. In the experiments, we achieve high-quality converted voice, that performs equally well or better than mono-lingual voice conversion.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9003939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9003939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

跨语语音转换(Cross-lingual voice conversion, VC)是指在源语和目标语使用不同语言的情况下,将源语说话人的声音转换成目标语说话人的声音。在本文中,我们建议使用生成对抗网络(GANs)进行跨语言语音转换。我们进一步研究了变分自动编码沃瑟斯坦GAN (VAW-GAN)和循环一致对抗网络(CycleGAN),这是已知的有效的单语言语音转换。由于跨语言语音转换需要跨不同语音系统进行语音转换,因此比单语言语音转换更具挑战性。通过使用VAW-GAN和CycleGAN,我们成功地转换了说话人身份,同时保留了源说话人的语言内容。所提出的想法的独特之处在于,它既不依赖于双语数据及其对齐,也不依赖于任何外部过程,如ASR。此外,它适用于任何两种语言的有限数量的训练数据。据我们所知,这是跨语言语音转换中生成对抗网络的第一个全面研究。在实验中,我们实现了高质量的语音转换,其性能与单语言语音转换相同或更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Study of Generative Adversarial Networks for Cross-Lingual Voice Conversion
Cross-lingual voice conversion (VC) aims to convert the source speaker's voice to sound like that of the target speaker, when the source and target speakers speak different languages. In this paper, we propose to use Generative Adversarial Networks (GANs) for cross-lingual voice-conversion. We further the studies on Variational Autoencoding Wasserstein GAN (VAW-GAN) and cycle-consistent adversarial network (CycleGAN), that are known to be effective for mono-lingual voice conversion. As cross-lingual voice conversion needs to converts the voice across different phonetic system, it is more challenging than mono-lingual voice conversion. By using VAW-GAN and CycleGAN, we successfully convert the speaker identity while carrying over the source speaker's linguistic content. The proposed idea is unique in the sense that it neither relies on bilingual data and their alignment, nor any external process, such as ASR. Moreover, it works with limited amount of training data of any two languages. To our best knowledge, this is the first comprehensive study of Generative Adversarial Networks in cross-lingual voice conversion. In the experiments, we achieve high-quality converted voice, that performs equally well or better than mono-lingual voice conversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信