荷兰非寿险公司评价的神经网络模型

B. Kramer
{"title":"荷兰非寿险公司评价的神经网络模型","authors":"B. Kramer","doi":"10.1109/ANNES.1995.499499","DOIUrl":null,"url":null,"abstract":"Based on six financial ratios, a one-hidden-layer back-propagation neural network classifies Dutch non-life insurance companies as strong moderate, or weak. The network shows very good performance for weak and strong companies (95% correct), but completely fails to recognize moderate companies. The relative importance of each input variable is analyzed by calculating the strength of the relationship between each input and each output variable.","PeriodicalId":123427,"journal":{"name":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A neural network model for the evaluation of Dutch non-life insurance companies\",\"authors\":\"B. Kramer\",\"doi\":\"10.1109/ANNES.1995.499499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on six financial ratios, a one-hidden-layer back-propagation neural network classifies Dutch non-life insurance companies as strong moderate, or weak. The network shows very good performance for weak and strong companies (95% correct), but completely fails to recognize moderate companies. The relative importance of each input variable is analyzed by calculating the strength of the relationship between each input and each output variable.\",\"PeriodicalId\":123427,\"journal\":{\"name\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANNES.1995.499499\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 Second New Zealand International Two-Stream Conference on Artificial Neural Networks and Expert Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANNES.1995.499499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于六项财务比率,一个单隐藏层反向传播神经网络将荷兰非寿险公司划分为强、中、弱。该网络对弱公司和强公司的表现都很好(95%的正确率),但对中等公司的识别却完全失败。通过计算每个输入变量和每个输出变量之间的关系强度来分析每个输入变量的相对重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network model for the evaluation of Dutch non-life insurance companies
Based on six financial ratios, a one-hidden-layer back-propagation neural network classifies Dutch non-life insurance companies as strong moderate, or weak. The network shows very good performance for weak and strong companies (95% correct), but completely fails to recognize moderate companies. The relative importance of each input variable is analyzed by calculating the strength of the relationship between each input and each output variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信