对观察到的离散无记忆信道的信道容量的pac绑定

M. A. Tope, Joel M. Morris
{"title":"对观察到的离散无记忆信道的信道容量的pac绑定","authors":"M. A. Tope, Joel M. Morris","doi":"10.1109/CISS50987.2021.9400323","DOIUrl":null,"url":null,"abstract":"This paper presents a method to compute the channel capacity of an observed (partially known) discrete memoryless channel (DMC) using a probably approximately correct (PAC) bound. Given $N$ independently and identically distributed (i.i.d.) input-output sample pairs, we define a compound DMC with convex sublevel-sets to constrain the channel output uncertainty with high probability. Then we numerically solve an ‘K-way’ convex optimization to determine an achievable information rate $R_{L}(N)$ across the channel that holds with a specified high probability. Our approach provides the non-asymptotic ‘worst-case’ convergence $R_{L}(N)$ to channel capacity $C$ at the rate of $O(\\sqrt{\\log (\\log (N)) / N})$.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"303 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A PAC-bound on the Channel Capacity of an Observed Discrete Memoryless Channel\",\"authors\":\"M. A. Tope, Joel M. Morris\",\"doi\":\"10.1109/CISS50987.2021.9400323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method to compute the channel capacity of an observed (partially known) discrete memoryless channel (DMC) using a probably approximately correct (PAC) bound. Given $N$ independently and identically distributed (i.i.d.) input-output sample pairs, we define a compound DMC with convex sublevel-sets to constrain the channel output uncertainty with high probability. Then we numerically solve an ‘K-way’ convex optimization to determine an achievable information rate $R_{L}(N)$ across the channel that holds with a specified high probability. Our approach provides the non-asymptotic ‘worst-case’ convergence $R_{L}(N)$ to channel capacity $C$ at the rate of $O(\\\\sqrt{\\\\log (\\\\log (N)) / N})$.\",\"PeriodicalId\":228112,\"journal\":{\"name\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"303 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS50987.2021.9400323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用可能近似正确(PAC)边界计算观测到的(部分已知的)离散无记忆信道(DMC)信道容量的方法。给定$N$独立同分布(i.i.d)输入输出样本对,我们定义了一个具有凸子水平集的复合DMC,以高概率约束信道输出的不确定性。然后,我们用数值方法求解一个“K-way”凸优化,以确定一个可实现的信息率$R_{L}(N)$,该信道具有指定的高概率。我们的方法以$O(\sqrt{\log (\log (N)) / N})$的速率提供了对信道容量$C$的非渐近“最坏情况”收敛$R_{L}(N)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A PAC-bound on the Channel Capacity of an Observed Discrete Memoryless Channel
This paper presents a method to compute the channel capacity of an observed (partially known) discrete memoryless channel (DMC) using a probably approximately correct (PAC) bound. Given $N$ independently and identically distributed (i.i.d.) input-output sample pairs, we define a compound DMC with convex sublevel-sets to constrain the channel output uncertainty with high probability. Then we numerically solve an ‘K-way’ convex optimization to determine an achievable information rate $R_{L}(N)$ across the channel that holds with a specified high probability. Our approach provides the non-asymptotic ‘worst-case’ convergence $R_{L}(N)$ to channel capacity $C$ at the rate of $O(\sqrt{\log (\log (N)) / N})$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信