基于词和令牌级表示的双向lstm中文互指解析

Kun Ming
{"title":"基于词和令牌级表示的双向lstm中文互指解析","authors":"Kun Ming","doi":"10.1109/CIS52066.2020.00024","DOIUrl":null,"url":null,"abstract":"Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.","PeriodicalId":106959,"journal":{"name":"2020 16th International Conference on Computational Intelligence and Security (CIS)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Chinese Coreference Resolution via Bidirectional LSTMs using Word and Token Level Representations\",\"authors\":\"Kun Ming\",\"doi\":\"10.1109/CIS52066.2020.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.\",\"PeriodicalId\":106959,\"journal\":{\"name\":\"2020 16th International Conference on Computational Intelligence and Security (CIS)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 16th International Conference on Computational Intelligence and Security (CIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIS52066.2020.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 16th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS52066.2020.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

共指解析是自然语言处理领域的一项重要任务。大多数现有的方法通常使用词级表示,忽略了文本中的大量信息。为了解决这一问题,我们研究了如何使用跨级语义表示来提高中文共指分辨率。具体来说,我们提出了一个模型,该模型通过预训练的Skip-Gram嵌入和预训练的BERT来获取单词和字符表示,然后通过在上述表示之间执行双向lstm来明确地利用跨度级信息。在CoNLL-2012共享任务上的实验表明,该模型的f1得分达到62.95%,优于我们的基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chinese Coreference Resolution via Bidirectional LSTMs using Word and Token Level Representations
Coreference resolution is an important task in the field of natural language processing. Most existing methods usually utilize word-level representations, ignoring massive information from the texts. To address this issue, we investigate how to improve Chinese coreference resolution by using span-level semantic representations. Specifically, we propose a model which acquires word and character representations through pre-trained Skip-Gram embeddings and pre-trained BERT, then explicitly leverages span-level information by performing bidirectional LSTMs among above representations. Experiments on CoNLL-2012 shared task have demonstrated that the proposed model achieves 62.95% F1-score, outperforming our baseline methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信