基于元胞自动机的多线索多尺度显著性检测

Ling Huang, Songguang Tang, Jiani Hu, Weihong Deng
{"title":"基于元胞自动机的多线索多尺度显著性检测","authors":"Ling Huang, Songguang Tang, Jiani Hu, Weihong Deng","doi":"10.1109/ICNIDC.2016.7974563","DOIUrl":null,"url":null,"abstract":"Saliency detection plays an important role in computer vision. This paper proposes a saliency detection algorithm which is based on multi-cue and multi-scale with cellular automata. The algorithm constructs a background-based map at first and optimizes it with an automatic updating mechanism — single-layer cellular automata. Furthermore, two important visual cues, focusness and objectness, are added to evaluate saliency in different perspectives. In addition, multi-scale is introduced to avoid the saliency results' sensitive to different scales and the output saliency map is generated by multi-layer fusion. Extensive experiments on three public datasets comparing with other state-of-the-art results demonstrate the superior of the algorithm.","PeriodicalId":439987,"journal":{"name":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saliency detection based on multi-cue and multi-scale with cellular automata\",\"authors\":\"Ling Huang, Songguang Tang, Jiani Hu, Weihong Deng\",\"doi\":\"10.1109/ICNIDC.2016.7974563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Saliency detection plays an important role in computer vision. This paper proposes a saliency detection algorithm which is based on multi-cue and multi-scale with cellular automata. The algorithm constructs a background-based map at first and optimizes it with an automatic updating mechanism — single-layer cellular automata. Furthermore, two important visual cues, focusness and objectness, are added to evaluate saliency in different perspectives. In addition, multi-scale is introduced to avoid the saliency results' sensitive to different scales and the output saliency map is generated by multi-layer fusion. Extensive experiments on three public datasets comparing with other state-of-the-art results demonstrate the superior of the algorithm.\",\"PeriodicalId\":439987,\"journal\":{\"name\":\"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIDC.2016.7974563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIDC.2016.7974563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

显著性检测在计算机视觉中起着重要的作用。提出了一种基于元胞自动机的多线索多尺度显著性检测算法。该算法首先构建基于背景的地图,然后利用单层元胞自动机自动更新机制对其进行优化。此外,两个重要的视觉线索,焦点和客观,被添加到评估显著性在不同的角度。此外,为了避免显著性结果对不同尺度的敏感,引入了多尺度,并通过多层融合生成输出的显著性图。在三个公开的数据集上进行了大量的实验,并与其他最新的结果进行了比较,证明了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Saliency detection based on multi-cue and multi-scale with cellular automata
Saliency detection plays an important role in computer vision. This paper proposes a saliency detection algorithm which is based on multi-cue and multi-scale with cellular automata. The algorithm constructs a background-based map at first and optimizes it with an automatic updating mechanism — single-layer cellular automata. Furthermore, two important visual cues, focusness and objectness, are added to evaluate saliency in different perspectives. In addition, multi-scale is introduced to avoid the saliency results' sensitive to different scales and the output saliency map is generated by multi-layer fusion. Extensive experiments on three public datasets comparing with other state-of-the-art results demonstrate the superior of the algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信