学习多模态图像的闭塞感知密集对应

Ryosuke Shimoya, Takashi Morimoto, J. van Baar, P. Boufounos, Yanting Ma, Hassan Mansour
{"title":"学习多模态图像的闭塞感知密集对应","authors":"Ryosuke Shimoya, Takashi Morimoto, J. van Baar, P. Boufounos, Yanting Ma, Hassan Mansour","doi":"10.1109/AVSS56176.2022.9959354","DOIUrl":null,"url":null,"abstract":"We introduce a scalable multi-modal approach to learn dense, i.e., pixel-level, correspondences and occlusion maps, between images in a video sequence. The problems of finding dense correspondences and occlusion maps are fundamental in computer vision. In this work we jointly train a deep network to tackle both, with a shared feature extraction stage. We use depth and color images with ground truth optical flow and occlusion maps to train the network end-to-end. From the multi-modal input, the network learns to estimate occlusion maps, optical flows, and a correspondence embedding providing a meaningful latent feature space. We evaluate the performance on a dataset of images derived from synthetic characters, and perform a thorough ablation study to demonstrate that the proposed components of our architecture combine to achieve the lowest correspondence error. The scalability of our proposed method comes from the ability to incorporate additional modalities, e.g., infrared images.","PeriodicalId":408581,"journal":{"name":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Learning Occlusion-Aware Dense Correspondences for Multi-Modal Images\",\"authors\":\"Ryosuke Shimoya, Takashi Morimoto, J. van Baar, P. Boufounos, Yanting Ma, Hassan Mansour\",\"doi\":\"10.1109/AVSS56176.2022.9959354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a scalable multi-modal approach to learn dense, i.e., pixel-level, correspondences and occlusion maps, between images in a video sequence. The problems of finding dense correspondences and occlusion maps are fundamental in computer vision. In this work we jointly train a deep network to tackle both, with a shared feature extraction stage. We use depth and color images with ground truth optical flow and occlusion maps to train the network end-to-end. From the multi-modal input, the network learns to estimate occlusion maps, optical flows, and a correspondence embedding providing a meaningful latent feature space. We evaluate the performance on a dataset of images derived from synthetic characters, and perform a thorough ablation study to demonstrate that the proposed components of our architecture combine to achieve the lowest correspondence error. The scalability of our proposed method comes from the ability to incorporate additional modalities, e.g., infrared images.\",\"PeriodicalId\":408581,\"journal\":{\"name\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AVSS56176.2022.9959354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVSS56176.2022.9959354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了一种可扩展的多模态方法来学习视频序列中图像之间的密集,即像素级,对应和遮挡映射。寻找密集对应和遮挡图的问题是计算机视觉的基础。在这项工作中,我们共同训练一个深度网络来解决这两个问题,并共享特征提取阶段。我们使用带有真实光流和遮挡图的深度和彩色图像对网络进行端到端训练。从多模态输入中,网络学习估计遮挡图,光流和提供有意义的潜在特征空间的对应嵌入。我们对合成特征图像数据集的性能进行了评估,并进行了彻底的消融研究,以证明我们提出的架构组件组合在一起可以实现最低的对应误差。我们提出的方法的可扩展性来自于合并其他模式的能力,例如红外图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning Occlusion-Aware Dense Correspondences for Multi-Modal Images
We introduce a scalable multi-modal approach to learn dense, i.e., pixel-level, correspondences and occlusion maps, between images in a video sequence. The problems of finding dense correspondences and occlusion maps are fundamental in computer vision. In this work we jointly train a deep network to tackle both, with a shared feature extraction stage. We use depth and color images with ground truth optical flow and occlusion maps to train the network end-to-end. From the multi-modal input, the network learns to estimate occlusion maps, optical flows, and a correspondence embedding providing a meaningful latent feature space. We evaluate the performance on a dataset of images derived from synthetic characters, and perform a thorough ablation study to demonstrate that the proposed components of our architecture combine to achieve the lowest correspondence error. The scalability of our proposed method comes from the ability to incorporate additional modalities, e.g., infrared images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信