Emoception:一个基于盗梦空间的高效语音情感识别网络

Chirag Singh, Abhay Kumar, Ajay Nagar, Suraj Tripathi, Promod Yenigalla
{"title":"Emoception:一个基于盗梦空间的高效语音情感识别网络","authors":"Chirag Singh, Abhay Kumar, Ajay Nagar, Suraj Tripathi, Promod Yenigalla","doi":"10.1109/ASRU46091.2019.9004020","DOIUrl":null,"url":null,"abstract":"This research proposes a Deep Neural Network architecture for Speech Emotion Recognition called Emoception, which takes inspiration from Inception modules. The network takes speech features like Mel-Frequency Spectral Coefficients (MFSC) or Mel-Frequency Cepstral Coefficients (MFCC) as input and recognizes the relevant emotion in the speech. We use USC-IEMOCAP dataset for training but the limited amount of training data and large depth of the network makes the network prone to overfitting, reducing validation accuracy. The Emoception network overcomes this problem by extending in width without increase in computational cost. We also employ a powerful regularization technique, Multi-Task Learning (MTL) to make the network robust. The model using MFSC input with MTL increases the accuracy by 1.6% vis-à-vis Emoception without MTL. We report an overall accuracy improvement of around 4.6% compared to the existing state-of-art methods for four emotion classes on IEMOCAP dataset.","PeriodicalId":150913,"journal":{"name":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Emoception: An Inception Inspired Efficient Speech Emotion Recognition Network\",\"authors\":\"Chirag Singh, Abhay Kumar, Ajay Nagar, Suraj Tripathi, Promod Yenigalla\",\"doi\":\"10.1109/ASRU46091.2019.9004020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research proposes a Deep Neural Network architecture for Speech Emotion Recognition called Emoception, which takes inspiration from Inception modules. The network takes speech features like Mel-Frequency Spectral Coefficients (MFSC) or Mel-Frequency Cepstral Coefficients (MFCC) as input and recognizes the relevant emotion in the speech. We use USC-IEMOCAP dataset for training but the limited amount of training data and large depth of the network makes the network prone to overfitting, reducing validation accuracy. The Emoception network overcomes this problem by extending in width without increase in computational cost. We also employ a powerful regularization technique, Multi-Task Learning (MTL) to make the network robust. The model using MFSC input with MTL increases the accuracy by 1.6% vis-à-vis Emoception without MTL. We report an overall accuracy improvement of around 4.6% compared to the existing state-of-art methods for four emotion classes on IEMOCAP dataset.\",\"PeriodicalId\":150913,\"journal\":{\"name\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU46091.2019.9004020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU46091.2019.9004020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本研究从盗梦空间模块中获得灵感,提出了一种用于语音情感识别的深度神经网络架构Emoception。该网络以Mel-Frequency Spectral Coefficients (MFSC)或Mel-Frequency Cepstral Coefficients (MFCC)等语音特征作为输入,识别语音中的相关情绪。我们使用USC-IEMOCAP数据集进行训练,但有限的训练数据量和大的网络深度使得网络容易过度拟合,降低了验证精度。情感网络通过在不增加计算成本的情况下扩展宽度来克服这一问题。我们还采用了一种强大的正则化技术,多任务学习(MTL)来增强网络的鲁棒性。与未使用MTL的-à-vis emooception相比,使用带有MTL的MFSC输入的模型准确率提高了1.6%。我们报告说,与IEMOCAP数据集上四个情感类别的现有最先进方法相比,总体准确率提高了约4.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Emoception: An Inception Inspired Efficient Speech Emotion Recognition Network
This research proposes a Deep Neural Network architecture for Speech Emotion Recognition called Emoception, which takes inspiration from Inception modules. The network takes speech features like Mel-Frequency Spectral Coefficients (MFSC) or Mel-Frequency Cepstral Coefficients (MFCC) as input and recognizes the relevant emotion in the speech. We use USC-IEMOCAP dataset for training but the limited amount of training data and large depth of the network makes the network prone to overfitting, reducing validation accuracy. The Emoception network overcomes this problem by extending in width without increase in computational cost. We also employ a powerful regularization technique, Multi-Task Learning (MTL) to make the network robust. The model using MFSC input with MTL increases the accuracy by 1.6% vis-à-vis Emoception without MTL. We report an overall accuracy improvement of around 4.6% compared to the existing state-of-art methods for four emotion classes on IEMOCAP dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信