基于网络嵌入的疾病进展模拟与分析新框架。

Francesco Chiodo, Mario Torchia, E. Messina, E. Fersini, T. Mazza, P. Guzzi
{"title":"基于网络嵌入的疾病进展模拟与分析新框架。","authors":"Francesco Chiodo, Mario Torchia, E. Messina, E. Fersini, T. Mazza, P. Guzzi","doi":"10.1109/BIBM55620.2022.9995396","DOIUrl":null,"url":null,"abstract":"Modelling infectious disease spreading is crucial for planning effective containment measures, as shown in the COVID-19 pandemic. The effectiveness of planned measures can also be measured regarding saved lives and economic resources. Therefore, introducing methods able to model the evolution and the impact of measures, as well as planning tailored and updated measures, is a crucial step. Existing models for spreading modelling belong to two main classes: (i) compartmental models based on ordinary differential equations and (ii) contact-based models based on a contact structure using an underlining layer to simulate diffusion. Nevertheless, none of these methods can leverage the high computational power of artificial intelligence and deep learning. We propose a novel framework for simulating and analysing disease progression for these methods. The framework is based on the multiscale simulation of the spreading based on using a multiscale contact model built on top of a diffusion model customised by the user. The evolution of the spreading, modelled as a graph with attributed nodes, is then mapped into a latent space through graph embedding. Finally, deep learning models are used in the latent space to analyse and forecast methods without running expensive computational simulations of the contact-based model.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A novel framework based on network embedding for the simulation and analysis of disease progression.\",\"authors\":\"Francesco Chiodo, Mario Torchia, E. Messina, E. Fersini, T. Mazza, P. Guzzi\",\"doi\":\"10.1109/BIBM55620.2022.9995396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Modelling infectious disease spreading is crucial for planning effective containment measures, as shown in the COVID-19 pandemic. The effectiveness of planned measures can also be measured regarding saved lives and economic resources. Therefore, introducing methods able to model the evolution and the impact of measures, as well as planning tailored and updated measures, is a crucial step. Existing models for spreading modelling belong to two main classes: (i) compartmental models based on ordinary differential equations and (ii) contact-based models based on a contact structure using an underlining layer to simulate diffusion. Nevertheless, none of these methods can leverage the high computational power of artificial intelligence and deep learning. We propose a novel framework for simulating and analysing disease progression for these methods. The framework is based on the multiscale simulation of the spreading based on using a multiscale contact model built on top of a diffusion model customised by the user. The evolution of the spreading, modelled as a graph with attributed nodes, is then mapped into a latent space through graph embedding. Finally, deep learning models are used in the latent space to analyse and forecast methods without running expensive computational simulations of the contact-based model.\",\"PeriodicalId\":210337,\"journal\":{\"name\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM55620.2022.9995396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

正如2019冠状病毒病大流行所示,对传染病传播进行建模对于规划有效的控制措施至关重要。计划措施的有效性也可以通过挽救生命和经济资源来衡量。因此,引入能够对度量的演变和影响进行建模的方法,以及规划定制的和更新的度量,是至关重要的一步。现有的扩散建模模型主要分为两大类:(i)基于常微分方程的隔室模型和(ii)基于接触结构的模型,使用下划线层模拟扩散。然而,这些方法都无法利用人工智能和深度学习的高计算能力。我们提出了一个新的框架来模拟和分析这些方法的疾病进展。该框架基于基于用户自定义扩散模型之上建立的多尺度接触模型的扩散多尺度模拟。扩展的演变,建模为具有属性节点的图,然后通过图嵌入映射到潜在空间。最后,在潜在空间中使用深度学习模型来分析和预测方法,而无需运行昂贵的基于接触的模型的计算模拟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel framework based on network embedding for the simulation and analysis of disease progression.
Modelling infectious disease spreading is crucial for planning effective containment measures, as shown in the COVID-19 pandemic. The effectiveness of planned measures can also be measured regarding saved lives and economic resources. Therefore, introducing methods able to model the evolution and the impact of measures, as well as planning tailored and updated measures, is a crucial step. Existing models for spreading modelling belong to two main classes: (i) compartmental models based on ordinary differential equations and (ii) contact-based models based on a contact structure using an underlining layer to simulate diffusion. Nevertheless, none of these methods can leverage the high computational power of artificial intelligence and deep learning. We propose a novel framework for simulating and analysing disease progression for these methods. The framework is based on the multiscale simulation of the spreading based on using a multiscale contact model built on top of a diffusion model customised by the user. The evolution of the spreading, modelled as a graph with attributed nodes, is then mapped into a latent space through graph embedding. Finally, deep learning models are used in the latent space to analyse and forecast methods without running expensive computational simulations of the contact-based model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信