能量采集器设计分析:运动速度和装置质量的影响

N. Gurusamy, I. Elamvazuthi, N. Yahya
{"title":"能量采集器设计分析:运动速度和装置质量的影响","authors":"N. Gurusamy, I. Elamvazuthi, N. Yahya","doi":"10.1109/ICIAS49414.2021.9642631","DOIUrl":null,"url":null,"abstract":"Design analysis has become an essential tool to ensure the outcome of the biomechanical harvesting device met the expected goal. Biomechanical energy harvesting has become a prominent research topic to substitute the huge and heavy commercialized batteries. Hence, a lot of limitations and challenges faced during the design stage of harvesting device. The major considerations are on the increased metabolic rate to carry the device and the electrical power harvested in given duration. The additional effort needed to carry the device at different joint locations is essential in ergonomics and it’s a key factor to design wearable device. Analysis was carried out to derive the scope of human’s metabolic rate with the motion speed and walking duration. This paper discusses the outcome which shows that longer duration with higher speed and lower device mass is essential for better performance.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"190 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design Analysis of Energy Harvester: The Impact of Speed of Motion and Mass of Device\",\"authors\":\"N. Gurusamy, I. Elamvazuthi, N. Yahya\",\"doi\":\"10.1109/ICIAS49414.2021.9642631\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Design analysis has become an essential tool to ensure the outcome of the biomechanical harvesting device met the expected goal. Biomechanical energy harvesting has become a prominent research topic to substitute the huge and heavy commercialized batteries. Hence, a lot of limitations and challenges faced during the design stage of harvesting device. The major considerations are on the increased metabolic rate to carry the device and the electrical power harvested in given duration. The additional effort needed to carry the device at different joint locations is essential in ergonomics and it’s a key factor to design wearable device. Analysis was carried out to derive the scope of human’s metabolic rate with the motion speed and walking duration. This paper discusses the outcome which shows that longer duration with higher speed and lower device mass is essential for better performance.\",\"PeriodicalId\":212635,\"journal\":{\"name\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"190 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS49414.2021.9642631\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设计分析已成为保证生物力学收获装置达到预期目标的重要工具。生物力学能量收集已成为替代大型、重型商用电池的重要研究课题。因此,在采收装置的设计阶段面临着许多限制和挑战。主要考虑的是携带设备的代谢率的增加和在给定时间内收集的电能。在不同的关节位置携带设备所需的额外努力在人体工程学中是必不可少的,也是设计可穿戴设备的关键因素。通过分析得出人体代谢率随运动速度和步行时间的变化范围。研究结果表明,较长的持续时间、较高的速度和较低的器件质量是提高性能的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design Analysis of Energy Harvester: The Impact of Speed of Motion and Mass of Device
Design analysis has become an essential tool to ensure the outcome of the biomechanical harvesting device met the expected goal. Biomechanical energy harvesting has become a prominent research topic to substitute the huge and heavy commercialized batteries. Hence, a lot of limitations and challenges faced during the design stage of harvesting device. The major considerations are on the increased metabolic rate to carry the device and the electrical power harvested in given duration. The additional effort needed to carry the device at different joint locations is essential in ergonomics and it’s a key factor to design wearable device. Analysis was carried out to derive the scope of human’s metabolic rate with the motion speed and walking duration. This paper discusses the outcome which shows that longer duration with higher speed and lower device mass is essential for better performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信