面向特定领域实体链接的序列学习方法

NEWS@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-2403
E. Inan, Oğuz Dikenelli
{"title":"面向特定领域实体链接的序列学习方法","authors":"E. Inan, Oğuz Dikenelli","doi":"10.18653/v1/W18-2403","DOIUrl":null,"url":null,"abstract":"Recent collective Entity Linking studies usually promote global coherence of all the mapped entities in the same document by using semantic embeddings and graph-based approaches. Although graph-based approaches are shown to achieve remarkable results, they are computationally expensive for general datasets. Also, semantic embeddings only indicate relatedness between entity pairs without considering sequences. In this paper, we address these problems by introducing a two-fold neural model. First, we match easy mention-entity pairs and using the domain information of this pair to filter candidate entities of closer mentions. Second, we resolve more ambiguous pairs using bidirectional Long Short-Term Memory and CRF models for the entity disambiguation. Our proposed system outperforms state-of-the-art systems on the generated domain-specific evaluation dataset.","PeriodicalId":189654,"journal":{"name":"NEWS@ACL","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Sequence Learning Method for Domain-Specific Entity Linking\",\"authors\":\"E. Inan, Oğuz Dikenelli\",\"doi\":\"10.18653/v1/W18-2403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent collective Entity Linking studies usually promote global coherence of all the mapped entities in the same document by using semantic embeddings and graph-based approaches. Although graph-based approaches are shown to achieve remarkable results, they are computationally expensive for general datasets. Also, semantic embeddings only indicate relatedness between entity pairs without considering sequences. In this paper, we address these problems by introducing a two-fold neural model. First, we match easy mention-entity pairs and using the domain information of this pair to filter candidate entities of closer mentions. Second, we resolve more ambiguous pairs using bidirectional Long Short-Term Memory and CRF models for the entity disambiguation. Our proposed system outperforms state-of-the-art systems on the generated domain-specific evaluation dataset.\",\"PeriodicalId\":189654,\"journal\":{\"name\":\"NEWS@ACL\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NEWS@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-2403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NEWS@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-2403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

最近的集体实体链接研究通常通过使用语义嵌入和基于图的方法来促进同一文档中所有映射实体的全局一致性。尽管基于图的方法取得了显著的结果,但对于一般数据集来说,它们的计算成本很高。此外,语义嵌入仅表示实体对之间的相关性,而不考虑序列。在本文中,我们通过引入双重神经模型来解决这些问题。首先,我们匹配简单的提及-实体对,并使用该对的域信息来过滤更接近提及的候选实体。其次,我们使用双向长短期记忆和CRF模型来解决实体歧义问题。我们提出的系统在生成的特定领域评估数据集上优于最先进的系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Sequence Learning Method for Domain-Specific Entity Linking
Recent collective Entity Linking studies usually promote global coherence of all the mapped entities in the same document by using semantic embeddings and graph-based approaches. Although graph-based approaches are shown to achieve remarkable results, they are computationally expensive for general datasets. Also, semantic embeddings only indicate relatedness between entity pairs without considering sequences. In this paper, we address these problems by introducing a two-fold neural model. First, we match easy mention-entity pairs and using the domain information of this pair to filter candidate entities of closer mentions. Second, we resolve more ambiguous pairs using bidirectional Long Short-Term Memory and CRF models for the entity disambiguation. Our proposed system outperforms state-of-the-art systems on the generated domain-specific evaluation dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信