一种基于混合策略的非刚体对象提取候选解生成器

Min Jiang, Xiaozhou Zhou, Shijie Yao, Zhaohui Gan
{"title":"一种基于混合策略的非刚体对象提取候选解生成器","authors":"Min Jiang, Xiaozhou Zhou, Shijie Yao, Zhaohui Gan","doi":"10.1109/SPAC.2014.6982712","DOIUrl":null,"url":null,"abstract":"Extracting non-rigid object from images can be used in object recognition, medical image analysis, video monitoring, etc. In order to improve the efficiency and accuracy of visual object extraction, we design a candidate shape generator based on a mixture strategy, called mixture generator, it combines the image data driven method with model parameter driven method, and tends to generate valid shape in area which has a high shape prior density value by exploiting the GPDM model, so the efficiency of search is greatly improved. To prove the accuracy of our mixture generator, we have done experiments under the framework of global optimization algorithm (simulated annealing) on the FGNET face database. Experiments show that, compared with traditional ASM algorithm, our method is not only insensitive to initialization conditions, but also can put up with clutters and realize a more robust object extraction.","PeriodicalId":326246,"journal":{"name":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A candidate solutions generator based on mixed strategy for non-rigid object extraction\",\"authors\":\"Min Jiang, Xiaozhou Zhou, Shijie Yao, Zhaohui Gan\",\"doi\":\"10.1109/SPAC.2014.6982712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extracting non-rigid object from images can be used in object recognition, medical image analysis, video monitoring, etc. In order to improve the efficiency and accuracy of visual object extraction, we design a candidate shape generator based on a mixture strategy, called mixture generator, it combines the image data driven method with model parameter driven method, and tends to generate valid shape in area which has a high shape prior density value by exploiting the GPDM model, so the efficiency of search is greatly improved. To prove the accuracy of our mixture generator, we have done experiments under the framework of global optimization algorithm (simulated annealing) on the FGNET face database. Experiments show that, compared with traditional ASM algorithm, our method is not only insensitive to initialization conditions, but also can put up with clutters and realize a more robust object extraction.\",\"PeriodicalId\":326246,\"journal\":{\"name\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAC.2014.6982712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC.2014.6982712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从图像中提取非刚性物体可用于物体识别、医学图像分析、视频监控等领域。为了提高视觉目标提取的效率和精度,我们设计了一种基于混合策略的候选形状生成器,称为混合形状生成器,它将图像数据驱动方法与模型参数驱动方法相结合,利用GPDM模型在形状先验密度值较高的区域内生成有效形状,从而大大提高了搜索效率。为了证明混合生成器的准确性,我们在全局优化算法(模拟退火)框架下在FGNET人脸数据库上进行了实验。实验表明,与传统的ASM算法相比,该方法不仅对初始化条件不敏感,而且能够承受杂波,实现更鲁棒的目标提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A candidate solutions generator based on mixed strategy for non-rigid object extraction
Extracting non-rigid object from images can be used in object recognition, medical image analysis, video monitoring, etc. In order to improve the efficiency and accuracy of visual object extraction, we design a candidate shape generator based on a mixture strategy, called mixture generator, it combines the image data driven method with model parameter driven method, and tends to generate valid shape in area which has a high shape prior density value by exploiting the GPDM model, so the efficiency of search is greatly improved. To prove the accuracy of our mixture generator, we have done experiments under the framework of global optimization algorithm (simulated annealing) on the FGNET face database. Experiments show that, compared with traditional ASM algorithm, our method is not only insensitive to initialization conditions, but also can put up with clutters and realize a more robust object extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信