基于往复式压缩机的故障诊断方法研究

Guorong Chen, Hong Ren, Yao Liu, Hongli He
{"title":"基于往复式压缩机的故障诊断方法研究","authors":"Guorong Chen, Hong Ren, Yao Liu, Hongli He","doi":"10.1109/IICSPI48186.2019.9096034","DOIUrl":null,"url":null,"abstract":"Based on the research and analysis of related fault diagnosis technologies at home and abroad, a fault diagnosis method for reciprocating compressors based on support vector machine and gravity search algorithm is proposed. This method optimizes the kernel parameters of SVM. Combined with an example of a fault diagnosis model of a reciprocating compressor, the analysis results show that the fault diagnosis method of a reciprocating compressor using the GSA-SVM algorithm has higher recognition accuracy than the SVM algorithm.","PeriodicalId":318693,"journal":{"name":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Fault Diagnosis Method Based on Reciprocating Compressor\",\"authors\":\"Guorong Chen, Hong Ren, Yao Liu, Hongli He\",\"doi\":\"10.1109/IICSPI48186.2019.9096034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the research and analysis of related fault diagnosis technologies at home and abroad, a fault diagnosis method for reciprocating compressors based on support vector machine and gravity search algorithm is proposed. This method optimizes the kernel parameters of SVM. Combined with an example of a fault diagnosis model of a reciprocating compressor, the analysis results show that the fault diagnosis method of a reciprocating compressor using the GSA-SVM algorithm has higher recognition accuracy than the SVM algorithm.\",\"PeriodicalId\":318693,\"journal\":{\"name\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 2nd International Conference on Safety Produce Informatization (IICSPI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IICSPI48186.2019.9096034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Safety Produce Informatization (IICSPI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IICSPI48186.2019.9096034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在对国内外相关故障诊断技术进行研究分析的基础上,提出了一种基于支持向量机和重力搜索算法的往复式压缩机故障诊断方法。该方法优化了支持向量机的核参数。结合往复式压缩机故障诊断模型实例,分析结果表明,基于GSA-SVM算法的往复式压缩机故障诊断方法比基于SVM算法的往复式压缩机故障诊断具有更高的识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Fault Diagnosis Method Based on Reciprocating Compressor
Based on the research and analysis of related fault diagnosis technologies at home and abroad, a fault diagnosis method for reciprocating compressors based on support vector machine and gravity search algorithm is proposed. This method optimizes the kernel parameters of SVM. Combined with an example of a fault diagnosis model of a reciprocating compressor, the analysis results show that the fault diagnosis method of a reciprocating compressor using the GSA-SVM algorithm has higher recognition accuracy than the SVM algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信