RLMob

Ziyan Luo, Congcong Miao
{"title":"RLMob","authors":"Ziyan Luo, Congcong Miao","doi":"10.1145/3488560.3498438","DOIUrl":null,"url":null,"abstract":"Human mobility prediction is an important task in the field of spatiotemporal sequential data mining and urban computing. Despite the extensive work on mining human mobility behavior, little attention was paid to the problem of successive mobility prediction. The state-of-the-art methods of human mobility prediction are mainly based on supervised learning. To achieve higher predictability and adapt well to the successive mobility prediction, there are four key challenges: 1) disability to the circumstance that the optimizing target is discrete-continuous hybrid and non-differentiable. In our work, we assume that the user's demands are always multi-targeted and can be modeled as a discrete-continuous hybrid function; 2) difficulty to alter the recommendation strategy flexibly according to the changes in user needs in real scenarios; 3) error propagation and exposure bias issues when predicting multiple points in successive mobility prediction; 4) cannot interactively explore user's potential interest that does not appear in the history. While previous methods met these difficulties, reinforcement learning (RL) is an intuitive answer for this task to settle these issues. We innovatively introduce RL to the successive prediction task. In this paper, we formulate this problem as a Markov Decision Process. We further propose a framework - RLMob to solve our problem. A simulated environment is carefully designed. An actor-critic framework with an instance of Proximal Policy Optimization (PPO) is applied to adapt to our scene with a large state space. Experiments show that on the task, the performance of our approach is consistently superior to that of the compared approaches.","PeriodicalId":348686,"journal":{"name":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"RLMob\",\"authors\":\"Ziyan Luo, Congcong Miao\",\"doi\":\"10.1145/3488560.3498438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human mobility prediction is an important task in the field of spatiotemporal sequential data mining and urban computing. Despite the extensive work on mining human mobility behavior, little attention was paid to the problem of successive mobility prediction. The state-of-the-art methods of human mobility prediction are mainly based on supervised learning. To achieve higher predictability and adapt well to the successive mobility prediction, there are four key challenges: 1) disability to the circumstance that the optimizing target is discrete-continuous hybrid and non-differentiable. In our work, we assume that the user's demands are always multi-targeted and can be modeled as a discrete-continuous hybrid function; 2) difficulty to alter the recommendation strategy flexibly according to the changes in user needs in real scenarios; 3) error propagation and exposure bias issues when predicting multiple points in successive mobility prediction; 4) cannot interactively explore user's potential interest that does not appear in the history. While previous methods met these difficulties, reinforcement learning (RL) is an intuitive answer for this task to settle these issues. We innovatively introduce RL to the successive prediction task. In this paper, we formulate this problem as a Markov Decision Process. We further propose a framework - RLMob to solve our problem. A simulated environment is carefully designed. An actor-critic framework with an instance of Proximal Policy Optimization (PPO) is applied to adapt to our scene with a large state space. Experiments show that on the task, the performance of our approach is consistently superior to that of the compared approaches.\",\"PeriodicalId\":348686,\"journal\":{\"name\":\"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3488560.3498438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3488560.3498438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
RLMob
Human mobility prediction is an important task in the field of spatiotemporal sequential data mining and urban computing. Despite the extensive work on mining human mobility behavior, little attention was paid to the problem of successive mobility prediction. The state-of-the-art methods of human mobility prediction are mainly based on supervised learning. To achieve higher predictability and adapt well to the successive mobility prediction, there are four key challenges: 1) disability to the circumstance that the optimizing target is discrete-continuous hybrid and non-differentiable. In our work, we assume that the user's demands are always multi-targeted and can be modeled as a discrete-continuous hybrid function; 2) difficulty to alter the recommendation strategy flexibly according to the changes in user needs in real scenarios; 3) error propagation and exposure bias issues when predicting multiple points in successive mobility prediction; 4) cannot interactively explore user's potential interest that does not appear in the history. While previous methods met these difficulties, reinforcement learning (RL) is an intuitive answer for this task to settle these issues. We innovatively introduce RL to the successive prediction task. In this paper, we formulate this problem as a Markov Decision Process. We further propose a framework - RLMob to solve our problem. A simulated environment is carefully designed. An actor-critic framework with an instance of Proximal Policy Optimization (PPO) is applied to adapt to our scene with a large state space. Experiments show that on the task, the performance of our approach is consistently superior to that of the compared approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信