在现实世界中探测平原和格雷维斑马

J. Parham, C. Stewart
{"title":"在现实世界中探测平原和格雷维斑马","authors":"J. Parham, C. Stewart","doi":"10.1109/WACVW.2016.7470122","DOIUrl":null,"url":null,"abstract":"Photographic censusing can be partly automated by leveraging the power of computer vision detection algorithms. Detecting zebras in the real world can be challenging due to varying viewpoints of the animal, natural and artificial occlusions, and overlapping animals. To address these challenges, we evaluate three detection algorithms: Hough Forests by [8], the YOLO network by [20], and Faster R-CNN [21]. We train the detectors on a soon-to-be-released dataset of 2,500 images containing 3,541 bounding boxes of plains zebras (Equus quagga) and 2,672 bounding boxes of Grevy's zebras (Equus grevyi). The detection errors are analyzed by species, viewpoint, and density (the number of bounding boxes per image). The best detector in our evaluation reports a detection mAP of 55.6% for plains and 56.6% for Grevy's.","PeriodicalId":185674,"journal":{"name":"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"318 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Detecting plains and Grevy's Zebras in the realworld\",\"authors\":\"J. Parham, C. Stewart\",\"doi\":\"10.1109/WACVW.2016.7470122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photographic censusing can be partly automated by leveraging the power of computer vision detection algorithms. Detecting zebras in the real world can be challenging due to varying viewpoints of the animal, natural and artificial occlusions, and overlapping animals. To address these challenges, we evaluate three detection algorithms: Hough Forests by [8], the YOLO network by [20], and Faster R-CNN [21]. We train the detectors on a soon-to-be-released dataset of 2,500 images containing 3,541 bounding boxes of plains zebras (Equus quagga) and 2,672 bounding boxes of Grevy's zebras (Equus grevyi). The detection errors are analyzed by species, viewpoint, and density (the number of bounding boxes per image). The best detector in our evaluation reports a detection mAP of 55.6% for plains and 56.6% for Grevy's.\",\"PeriodicalId\":185674,\"journal\":{\"name\":\"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"318 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2016.7470122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2016.7470122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

通过利用计算机视觉检测算法的力量,照片普查可以部分自动化。由于动物的不同视角,自然和人工遮挡以及动物重叠,在现实世界中检测斑马可能具有挑战性。为了解决这些挑战,我们评估了三种检测算法:Hough Forests[8]、YOLO网络[20]和Faster R-CNN[21]。我们在一个即将发布的数据集上训练检测器,该数据集包含2500张图像,其中包含3541张平原斑马(Equus quagga)的边界框和2672张格雷维斑马(Equus grevyi)的边界框。检测误差根据物种、视点和密度(每张图像的边界框数量)进行分析。在我们的评估中,最好的检测器报告了平原的检测mAP为55.6%,格雷维的检测mAP为56.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Detecting plains and Grevy's Zebras in the realworld
Photographic censusing can be partly automated by leveraging the power of computer vision detection algorithms. Detecting zebras in the real world can be challenging due to varying viewpoints of the animal, natural and artificial occlusions, and overlapping animals. To address these challenges, we evaluate three detection algorithms: Hough Forests by [8], the YOLO network by [20], and Faster R-CNN [21]. We train the detectors on a soon-to-be-released dataset of 2,500 images containing 3,541 bounding boxes of plains zebras (Equus quagga) and 2,672 bounding boxes of Grevy's zebras (Equus grevyi). The detection errors are analyzed by species, viewpoint, and density (the number of bounding boxes per image). The best detector in our evaluation reports a detection mAP of 55.6% for plains and 56.6% for Grevy's.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信