基于foaf的手工业妇女排序特征聚类

Rania Yangui, Ahlem Nabli, F. Gargouri
{"title":"基于foaf的手工业妇女排序特征聚类","authors":"Rania Yangui, Ahlem Nabli, F. Gargouri","doi":"10.1109/ICTA.2015.7426890","DOIUrl":null,"url":null,"abstract":"This paper builds upon the BWEC1 (Business for Women in Women of Emerging Country) research project to improve the socio-economic situation of handicraft women. In this project our principal task is to build data warehouse schema from handicraft women social network. For that, we follow a semi-supervised clustering-based methodology. In this paper, we propose the adaptation of a semi-supervised hierarchical clustering based on ranking mixed features for the FAOF ontology. This later serves as perfect input data for clustering. The main contribution is to use ontology-based similarity measures that combine numerical and nominal variables along different dimensions (instances, attributes, and relation-ships) and to provide a performable clustering algorithm based on ranking features. The evaluation of the used clustering methods in the context of the project emphasizes it effectiveness to generate valid clusters which can be successfully used for extending the data warehouse schema.","PeriodicalId":375443,"journal":{"name":"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)","volume":"448 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"FOAF-based clustering of handicraft women using ranked features\",\"authors\":\"Rania Yangui, Ahlem Nabli, F. Gargouri\",\"doi\":\"10.1109/ICTA.2015.7426890\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper builds upon the BWEC1 (Business for Women in Women of Emerging Country) research project to improve the socio-economic situation of handicraft women. In this project our principal task is to build data warehouse schema from handicraft women social network. For that, we follow a semi-supervised clustering-based methodology. In this paper, we propose the adaptation of a semi-supervised hierarchical clustering based on ranking mixed features for the FAOF ontology. This later serves as perfect input data for clustering. The main contribution is to use ontology-based similarity measures that combine numerical and nominal variables along different dimensions (instances, attributes, and relation-ships) and to provide a performable clustering algorithm based on ranking features. The evaluation of the used clustering methods in the context of the project emphasizes it effectiveness to generate valid clusters which can be successfully used for extending the data warehouse schema.\",\"PeriodicalId\":375443,\"journal\":{\"name\":\"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)\",\"volume\":\"448 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTA.2015.7426890\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 5th International Conference on Information & Communication Technology and Accessibility (ICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTA.2015.7426890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文建立在BWEC1(新兴国家妇女的商业)研究项目的基础上,以改善手工业妇女的社会经济状况。在这个项目中,我们的主要任务是构建手工艺女性社交网络的数据仓库模式。为此,我们采用一种基于半监督聚类的方法。针对FAOF本体,提出了一种基于混合特征排序的半监督分层聚类方法。稍后,这将作为聚类的完美输入数据。其主要贡献是使用基于本体的相似性度量,这些相似性度量沿着不同的维度(实例、属性和关系)组合数值变量和名义变量,并提供基于排序特征的可执行聚类算法。在项目背景下对所使用的聚类方法进行了评估,强调了其生成有效集群的有效性,这些集群可以成功地用于扩展数据仓库模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FOAF-based clustering of handicraft women using ranked features
This paper builds upon the BWEC1 (Business for Women in Women of Emerging Country) research project to improve the socio-economic situation of handicraft women. In this project our principal task is to build data warehouse schema from handicraft women social network. For that, we follow a semi-supervised clustering-based methodology. In this paper, we propose the adaptation of a semi-supervised hierarchical clustering based on ranking mixed features for the FAOF ontology. This later serves as perfect input data for clustering. The main contribution is to use ontology-based similarity measures that combine numerical and nominal variables along different dimensions (instances, attributes, and relation-ships) and to provide a performable clustering algorithm based on ranking features. The evaluation of the used clustering methods in the context of the project emphasizes it effectiveness to generate valid clusters which can be successfully used for extending the data warehouse schema.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信