{"title":"控制流量可以得到稳定的决策树","authors":"Dimitris Kalles, Athanassios Papagelis","doi":"10.1109/TAI.1999.809802","DOIUrl":null,"url":null,"abstract":"This work deals with stability in incremental induction of decision trees. Stability problems arise when an induction algorithm must revise a decision tree very often and oscillations between similar concepts decrease learning speed. We introduce a heuristic and an algorithm with theoretical and experimental backing to tackle this problem.","PeriodicalId":194023,"journal":{"name":"Proceedings 11th International Conference on Tools with Artificial Intelligence","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled flux results in stable decision trees\",\"authors\":\"Dimitris Kalles, Athanassios Papagelis\",\"doi\":\"10.1109/TAI.1999.809802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work deals with stability in incremental induction of decision trees. Stability problems arise when an induction algorithm must revise a decision tree very often and oscillations between similar concepts decrease learning speed. We introduce a heuristic and an algorithm with theoretical and experimental backing to tackle this problem.\",\"PeriodicalId\":194023,\"journal\":{\"name\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 11th International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAI.1999.809802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 11th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAI.1999.809802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work deals with stability in incremental induction of decision trees. Stability problems arise when an induction algorithm must revise a decision tree very often and oscillations between similar concepts decrease learning speed. We introduce a heuristic and an algorithm with theoretical and experimental backing to tackle this problem.