应用人工神经网络诊断肝炎病毒所致肝病

Sana Ansari, I. Shafi, A. Ansari, J. Ahmad, Syed Ismail Shah
{"title":"应用人工神经网络诊断肝炎病毒所致肝病","authors":"Sana Ansari, I. Shafi, A. Ansari, J. Ahmad, Syed Ismail Shah","doi":"10.1109/INMIC.2011.6151515","DOIUrl":null,"url":null,"abstract":"This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. The dataset used for this purpose is taken from the UCI machine learning database. Both supervised and unsupervised neural network models have been analyzed with different architectures, learning and activation functions. It is concluded that the supervised model performed better than the unsupervised one. The paper also compares the results of the previous studies on the diagnosis of hepatitis which use the same dataset.","PeriodicalId":207616,"journal":{"name":"2011 IEEE 14th International Multitopic Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Diagnosis of liver disease induced by hepatitis virus using Artificial Neural Networks\",\"authors\":\"Sana Ansari, I. Shafi, A. Ansari, J. Ahmad, Syed Ismail Shah\",\"doi\":\"10.1109/INMIC.2011.6151515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. The dataset used for this purpose is taken from the UCI machine learning database. Both supervised and unsupervised neural network models have been analyzed with different architectures, learning and activation functions. It is concluded that the supervised model performed better than the unsupervised one. The paper also compares the results of the previous studies on the diagnosis of hepatitis which use the same dataset.\",\"PeriodicalId\":207616,\"journal\":{\"name\":\"2011 IEEE 14th International Multitopic Conference\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 14th International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2011.6151515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 14th International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2011.6151515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

本文提出了一种基于人工神经网络的肝炎病毒诊断方法。用于此目的的数据集取自UCI机器学习数据库。对有监督和无监督神经网络模型进行了不同结构、学习和激活函数的分析。结果表明,有监督模型的性能优于无监督模型。本文还比较了以往使用相同数据集的肝炎诊断研究的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diagnosis of liver disease induced by hepatitis virus using Artificial Neural Networks
This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. The dataset used for this purpose is taken from the UCI machine learning database. Both supervised and unsupervised neural network models have been analyzed with different architectures, learning and activation functions. It is concluded that the supervised model performed better than the unsupervised one. The paper also compares the results of the previous studies on the diagnosis of hepatitis which use the same dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信