Sana Ansari, I. Shafi, A. Ansari, J. Ahmad, Syed Ismail Shah
{"title":"应用人工神经网络诊断肝炎病毒所致肝病","authors":"Sana Ansari, I. Shafi, A. Ansari, J. Ahmad, Syed Ismail Shah","doi":"10.1109/INMIC.2011.6151515","DOIUrl":null,"url":null,"abstract":"This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. The dataset used for this purpose is taken from the UCI machine learning database. Both supervised and unsupervised neural network models have been analyzed with different architectures, learning and activation functions. It is concluded that the supervised model performed better than the unsupervised one. The paper also compares the results of the previous studies on the diagnosis of hepatitis which use the same dataset.","PeriodicalId":207616,"journal":{"name":"2011 IEEE 14th International Multitopic Conference","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Diagnosis of liver disease induced by hepatitis virus using Artificial Neural Networks\",\"authors\":\"Sana Ansari, I. Shafi, A. Ansari, J. Ahmad, Syed Ismail Shah\",\"doi\":\"10.1109/INMIC.2011.6151515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. The dataset used for this purpose is taken from the UCI machine learning database. Both supervised and unsupervised neural network models have been analyzed with different architectures, learning and activation functions. It is concluded that the supervised model performed better than the unsupervised one. The paper also compares the results of the previous studies on the diagnosis of hepatitis which use the same dataset.\",\"PeriodicalId\":207616,\"journal\":{\"name\":\"2011 IEEE 14th International Multitopic Conference\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 14th International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2011.6151515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 14th International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2011.6151515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Diagnosis of liver disease induced by hepatitis virus using Artificial Neural Networks
This paper presents an artificial neural network based approach for the diagnosis of hepatitis virus. The dataset used for this purpose is taken from the UCI machine learning database. Both supervised and unsupervised neural network models have been analyzed with different architectures, learning and activation functions. It is concluded that the supervised model performed better than the unsupervised one. The paper also compares the results of the previous studies on the diagnosis of hepatitis which use the same dataset.