为海军DDG 51级舰艇开发和测试混合动力驱动程序

Gianfranco P. Buonamici, Michaela Schauble
{"title":"为海军DDG 51级舰艇开发和测试混合动力驱动程序","authors":"Gianfranco P. Buonamici, Michaela Schauble","doi":"10.1115/GT2018-76928","DOIUrl":null,"url":null,"abstract":"This paper will discuss the development and testing of an electric drive option designed for the propulsion system of the US Navy’s DDG 51 Class ships. It will briefly explain the history of the Hybrid Electric Drive (HED) program, including that of its predecessor, Proof of Concept (PoC), and the HED’s planned shipboard installation schedule.\n Operating at lower ship speeds, in a range where the currently installed propulsion gas turbines are less fuel efficient, the HED is expected to increase the ship’s fuel economy, allowing the ship to remain on station accomplishing its mission for a longer period of time. This paper will discuss how the gas turbine propulsion system, in concert with the HED, will be used to provide the most fuel efficient drive combination for various operating scenarios. Also covered will be a description of the major stakeholders involved in the HED’s development and implementation along with some of the constraints and challenges that were encountered in the testing phase of the program, both at the OEM facilities and at the US Navy’s Land Based Engineering Site (LBES) in Philadelphia PA.\n Planned fuel economy testing results obtained at the LBES facility will also be presented, intended to determine an estimate of the fuel savings that can be expected when the system is first placed in service on USS TRUXTUN (DDG 103) July 2018.","PeriodicalId":114672,"journal":{"name":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Testing of the Hybrid Electric Drive Program for the Navy’s DDG 51 Class Ships\",\"authors\":\"Gianfranco P. Buonamici, Michaela Schauble\",\"doi\":\"10.1115/GT2018-76928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper will discuss the development and testing of an electric drive option designed for the propulsion system of the US Navy’s DDG 51 Class ships. It will briefly explain the history of the Hybrid Electric Drive (HED) program, including that of its predecessor, Proof of Concept (PoC), and the HED’s planned shipboard installation schedule.\\n Operating at lower ship speeds, in a range where the currently installed propulsion gas turbines are less fuel efficient, the HED is expected to increase the ship’s fuel economy, allowing the ship to remain on station accomplishing its mission for a longer period of time. This paper will discuss how the gas turbine propulsion system, in concert with the HED, will be used to provide the most fuel efficient drive combination for various operating scenarios. Also covered will be a description of the major stakeholders involved in the HED’s development and implementation along with some of the constraints and challenges that were encountered in the testing phase of the program, both at the OEM facilities and at the US Navy’s Land Based Engineering Site (LBES) in Philadelphia PA.\\n Planned fuel economy testing results obtained at the LBES facility will also be presented, intended to determine an estimate of the fuel savings that can be expected when the system is first placed in service on USS TRUXTUN (DDG 103) July 2018.\",\"PeriodicalId\":114672,\"journal\":{\"name\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Aircraft Engine; Fans and Blowers; Marine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Aircraft Engine; Fans and Blowers; Marine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将讨论为美国海军DDG 51级舰艇推进系统设计的电力驱动选项的开发和测试。本文将简要介绍混合动力驱动(HED)项目的历史,包括其前身,概念验证(PoC),以及HED计划的船上安装时间表。在较低的船速下运行,在目前安装的推进燃气轮机燃油效率较低的范围内,HED有望提高船舶的燃油经济性,使船舶能够在更长的时间内保持在空间站完成其任务。本文将讨论如何将燃气轮机推进系统与HED相结合,为各种操作场景提供最省油的驱动组合。此外,还将介绍HED开发和实施过程中涉及的主要利益相关者,以及在项目测试阶段遇到的一些限制和挑战,包括在OEM工厂和美国海军的陆基工程基地(LBES)。还将介绍在LBES设施获得的计划燃油经济性测试结果,旨在确定该系统于2018年7月首次在USS TRUXTUN (DDG 103)上投入使用时可预期的燃油节省估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development and Testing of the Hybrid Electric Drive Program for the Navy’s DDG 51 Class Ships
This paper will discuss the development and testing of an electric drive option designed for the propulsion system of the US Navy’s DDG 51 Class ships. It will briefly explain the history of the Hybrid Electric Drive (HED) program, including that of its predecessor, Proof of Concept (PoC), and the HED’s planned shipboard installation schedule. Operating at lower ship speeds, in a range where the currently installed propulsion gas turbines are less fuel efficient, the HED is expected to increase the ship’s fuel economy, allowing the ship to remain on station accomplishing its mission for a longer period of time. This paper will discuss how the gas turbine propulsion system, in concert with the HED, will be used to provide the most fuel efficient drive combination for various operating scenarios. Also covered will be a description of the major stakeholders involved in the HED’s development and implementation along with some of the constraints and challenges that were encountered in the testing phase of the program, both at the OEM facilities and at the US Navy’s Land Based Engineering Site (LBES) in Philadelphia PA. Planned fuel economy testing results obtained at the LBES facility will also be presented, intended to determine an estimate of the fuel savings that can be expected when the system is first placed in service on USS TRUXTUN (DDG 103) July 2018.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信