{"title":"可变步长块最小均方自适应滤波器","authors":"M. Abadi, S. Mousavi, A. Hadei","doi":"10.1109/ICIIS.2006.365797","DOIUrl":null,"url":null,"abstract":"The block LMS algorithms can constitute a major branch in the adaptive algorithms family. In this paper we introduce the new variable step size block least mean square (VSSBLMS) adaptive filter algorithm. The proposed algorithm exhibits fast convergence and lower steady state mean square error when compared to the ordinary BLMS algorithm","PeriodicalId":122994,"journal":{"name":"First International Conference on Industrial and Information Systems","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Variable Step-Size Block Least Mean Square Adaptive Filters\",\"authors\":\"M. Abadi, S. Mousavi, A. Hadei\",\"doi\":\"10.1109/ICIIS.2006.365797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The block LMS algorithms can constitute a major branch in the adaptive algorithms family. In this paper we introduce the new variable step size block least mean square (VSSBLMS) adaptive filter algorithm. The proposed algorithm exhibits fast convergence and lower steady state mean square error when compared to the ordinary BLMS algorithm\",\"PeriodicalId\":122994,\"journal\":{\"name\":\"First International Conference on Industrial and Information Systems\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First International Conference on Industrial and Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIS.2006.365797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First International Conference on Industrial and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIS.2006.365797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Variable Step-Size Block Least Mean Square Adaptive Filters
The block LMS algorithms can constitute a major branch in the adaptive algorithms family. In this paper we introduce the new variable step size block least mean square (VSSBLMS) adaptive filter algorithm. The proposed algorithm exhibits fast convergence and lower steady state mean square error when compared to the ordinary BLMS algorithm