IF 1 4区 工程技术 Q4 MECHANICS
Ridha Ziani , Ahmed Hammami , Fakher Chaari , Ahmed Felkaoui , Mohamed Haddar
{"title":"Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector","authors":"Ridha Ziani ,&nbsp;Ahmed Hammami ,&nbsp;Fakher Chaari ,&nbsp;Ahmed Felkaoui ,&nbsp;Mohamed Haddar","doi":"10.1016/j.crme.2019.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>Condition monitoring of gearboxes running under non-stationary operating conditions is a very difficult task. In this study, a signal processing technique is developed for damage detection of a bevel gearbox running under variable load and speed conditions. The proposed technique is applied on simulated vibration data computed through a dynamic model of bevel gearbox. The procedure used in this technique is based on the extraction of the shock related to the defect using the Shock Detector (SD) method. Firstly, vibration signals are decomposed into IMFs using Empirical Mode Decomposition (EMD). Then, the Teager–Kaiser Energy Operator (TKEO) is used to assess the instantaneous energy of the signal. Afterwards, SD is applied to examine and quantify the shock contents of the TKEO signal, which reflect the effect of the defect.</p></div>","PeriodicalId":50997,"journal":{"name":"Comptes Rendus Mecanique","volume":"347 9","pages":"Pages 663-675"},"PeriodicalIF":1.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.crme.2019.08.003","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus Mecanique","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1631072119301251","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 16

摘要

非平稳工况下齿轮箱的状态监测是一项非常困难的任务。本文研究了一种用于变载变速锥齿轮箱损伤检测的信号处理技术。将该方法应用于锥齿轮箱动力学模型的模拟振动数据。该技术中使用的程序是基于使用冲击检测器(SD)方法提取与缺陷相关的冲击。首先,利用经验模态分解(EMD)将振动信号分解为多个模态。然后,使用Teager-Kaiser能量算子(TKEO)来评估信号的瞬时能量。然后用SD检测和量化TKEO信号的冲击含量,反映缺陷的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector

Condition monitoring of gearboxes running under non-stationary operating conditions is a very difficult task. In this study, a signal processing technique is developed for damage detection of a bevel gearbox running under variable load and speed conditions. The proposed technique is applied on simulated vibration data computed through a dynamic model of bevel gearbox. The procedure used in this technique is based on the extraction of the shock related to the defect using the Shock Detector (SD) method. Firstly, vibration signals are decomposed into IMFs using Empirical Mode Decomposition (EMD). Then, the Teager–Kaiser Energy Operator (TKEO) is used to assess the instantaneous energy of the signal. Afterwards, SD is applied to examine and quantify the shock contents of the TKEO signal, which reflect the effect of the defect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Comptes Rendus Mecanique
Comptes Rendus Mecanique 物理-力学
CiteScore
1.40
自引率
0.00%
发文量
0
审稿时长
12 months
期刊介绍: The Comptes rendus - Mécanique cover all fields of the discipline: Logic, Combinatorics, Number Theory, Group Theory, Mathematical Analysis, (Partial) Differential Equations, Geometry, Topology, Dynamical systems, Mathematical Physics, Mathematical Problems in Mechanics, Signal Theory, Mathematical Economics, … The journal publishes original and high-quality research articles. These can be in either in English or in French, with an abstract in both languages. An abridged version of the main text in the second language may also be included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信