提高公共卫生数据质量:分析非洲应用于艾滋病毒/艾滋病数据的异常检测工具

Folashikemi Maryam Asani Olaniyan, A. Owoseni
{"title":"提高公共卫生数据质量:分析非洲应用于艾滋病毒/艾滋病数据的异常检测工具","authors":"Folashikemi Maryam Asani Olaniyan, A. Owoseni","doi":"10.23919/IST-Africa56635.2022.9845662","DOIUrl":null,"url":null,"abstract":"The study examined the data quality efficiency of the WHO Data Quality Review (DQR) toolkit and PyCaret anomaly detection algorithms. The tools were applied to the African HIV/AIDS data (2015-2021) extracted from a public data repository (data.pepfar.gov). The research outcome suggests that unsupervised anomaly detection algorithms could complement the efficiency of the WHO DQR toolkit and improve Data Quality Assessment (DQA). In particular, the study showed that anomaly detection algorithms through python programming provide a more straightforward and more reliable process for detecting data inconsistencies, incompleteness, and timeliness appears more accurate than the WHO tool. Consequently, the study contributed to ongoing debates on improving health data quality in low-income African countries.","PeriodicalId":142887,"journal":{"name":"2022 IST-Africa Conference (IST-Africa)","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Improved Data Quality in Public Health: Analysis of Anomaly Detection Tools applied to HIV/AIDS Data in Africa\",\"authors\":\"Folashikemi Maryam Asani Olaniyan, A. Owoseni\",\"doi\":\"10.23919/IST-Africa56635.2022.9845662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study examined the data quality efficiency of the WHO Data Quality Review (DQR) toolkit and PyCaret anomaly detection algorithms. The tools were applied to the African HIV/AIDS data (2015-2021) extracted from a public data repository (data.pepfar.gov). The research outcome suggests that unsupervised anomaly detection algorithms could complement the efficiency of the WHO DQR toolkit and improve Data Quality Assessment (DQA). In particular, the study showed that anomaly detection algorithms through python programming provide a more straightforward and more reliable process for detecting data inconsistencies, incompleteness, and timeliness appears more accurate than the WHO tool. Consequently, the study contributed to ongoing debates on improving health data quality in low-income African countries.\",\"PeriodicalId\":142887,\"journal\":{\"name\":\"2022 IST-Africa Conference (IST-Africa)\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IST-Africa Conference (IST-Africa)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/IST-Africa56635.2022.9845662\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IST-Africa Conference (IST-Africa)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/IST-Africa56635.2022.9845662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

该研究检查了世卫组织数据质量审查(DQR)工具包和PyCaret异常检测算法的数据质量效率。这些工具被应用于从公共数据库(data.pepfar.gov)中提取的非洲艾滋病毒/艾滋病数据(2015-2021年)。研究结果表明,无监督异常检测算法可以补充WHO DQR工具包的效率,提高数据质量评估(DQA)。特别是,该研究表明,通过python编程的异常检测算法为检测数据不一致、不完整和及时性提供了更直接、更可靠的过程,似乎比WHO工具更准确。因此,这项研究促进了正在进行的关于提高低收入非洲国家卫生数据质量的辩论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Toward Improved Data Quality in Public Health: Analysis of Anomaly Detection Tools applied to HIV/AIDS Data in Africa
The study examined the data quality efficiency of the WHO Data Quality Review (DQR) toolkit and PyCaret anomaly detection algorithms. The tools were applied to the African HIV/AIDS data (2015-2021) extracted from a public data repository (data.pepfar.gov). The research outcome suggests that unsupervised anomaly detection algorithms could complement the efficiency of the WHO DQR toolkit and improve Data Quality Assessment (DQA). In particular, the study showed that anomaly detection algorithms through python programming provide a more straightforward and more reliable process for detecting data inconsistencies, incompleteness, and timeliness appears more accurate than the WHO tool. Consequently, the study contributed to ongoing debates on improving health data quality in low-income African countries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信