当好的平衡变坏:讨论使用熵平衡时的常见陷阱

Jeff L. McMullin, B. Schonberger
{"title":"当好的平衡变坏:讨论使用熵平衡时的常见陷阱","authors":"Jeff L. McMullin, B. Schonberger","doi":"10.2139/ssrn.3786224","DOIUrl":null,"url":null,"abstract":"For many accounting research questions, empirical researchers cannot randomly assign observations to treatment conditions or identify a quasi-experimental setting. In these cases, entropy balancing (Hainmueller 2012) is an increasingly popular statistical method for identifying a control sample that is nearly identical to the treated sample with respect to observable covariates. In this paper, we compare entropy balancing’s approach of reweighting control sample observations to ordinary least squares and propensity score matching. We demonstrate that researchers applying entropy balancing in empirical settings involving panel data with features common in accounting research may encounter implementation issues that render the resulting estimates sensitive to relatively minor changes in the control sample or the research design. Using the setting of estimating the Big-N audit fee premium, we empirically demonstrate these issues and propose solutions.","PeriodicalId":273058,"journal":{"name":"ERN: Model Construction & Estimation (Topic)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"When Good Balance Goes Bad: a Discussion of Common Pitfalls When Using Entropy Balancing\",\"authors\":\"Jeff L. McMullin, B. Schonberger\",\"doi\":\"10.2139/ssrn.3786224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For many accounting research questions, empirical researchers cannot randomly assign observations to treatment conditions or identify a quasi-experimental setting. In these cases, entropy balancing (Hainmueller 2012) is an increasingly popular statistical method for identifying a control sample that is nearly identical to the treated sample with respect to observable covariates. In this paper, we compare entropy balancing’s approach of reweighting control sample observations to ordinary least squares and propensity score matching. We demonstrate that researchers applying entropy balancing in empirical settings involving panel data with features common in accounting research may encounter implementation issues that render the resulting estimates sensitive to relatively minor changes in the control sample or the research design. Using the setting of estimating the Big-N audit fee premium, we empirically demonstrate these issues and propose solutions.\",\"PeriodicalId\":273058,\"journal\":{\"name\":\"ERN: Model Construction & Estimation (Topic)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Model Construction & Estimation (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3786224\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Model Construction & Estimation (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3786224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

对于许多会计研究问题,实证研究人员不能随机分配观察到治疗条件或确定准实验设置。在这些情况下,熵平衡(Hainmueller 2012)是一种越来越流行的统计方法,用于识别在可观察协变量方面与处理样本几乎相同的控制样本。本文将熵平衡的控制样本观测值重加权方法与普通最小二乘和倾向评分匹配方法进行了比较。我们证明,在涉及具有会计研究中常见特征的面板数据的实证设置中应用熵平衡的研究人员可能会遇到实施问题,这些问题使所得估计对控制样本或研究设计中相对较小的变化敏感。利用估算大n审计费用溢价的设置,实证地论证了这些问题,并提出了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When Good Balance Goes Bad: a Discussion of Common Pitfalls When Using Entropy Balancing
For many accounting research questions, empirical researchers cannot randomly assign observations to treatment conditions or identify a quasi-experimental setting. In these cases, entropy balancing (Hainmueller 2012) is an increasingly popular statistical method for identifying a control sample that is nearly identical to the treated sample with respect to observable covariates. In this paper, we compare entropy balancing’s approach of reweighting control sample observations to ordinary least squares and propensity score matching. We demonstrate that researchers applying entropy balancing in empirical settings involving panel data with features common in accounting research may encounter implementation issues that render the resulting estimates sensitive to relatively minor changes in the control sample or the research design. Using the setting of estimating the Big-N audit fee premium, we empirically demonstrate these issues and propose solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信