模块化贝叶斯网络对幼儿园班级群体情绪的预测

Sung-Bae Cho, Jun-Ho Kim
{"title":"模块化贝叶斯网络对幼儿园班级群体情绪的预测","authors":"Sung-Bae Cho, Jun-Ho Kim","doi":"10.1109/SOCPAR.2015.7492825","DOIUrl":null,"url":null,"abstract":"Conventional methods predict emotion directly by measuring equipment like electrode. However, this approach is not suitable for education, especially for children. In this paper, we propose modular Bayesian networks for predicting the emotion with the environment information from the sensors. The Bayesian network is constructed as modules divided by Markov boundary. To evaluate the proposed method, we use data collected from kindergarten classes. The results show more than 84% accuracy and 20 times faster than the single Bayesian network.","PeriodicalId":409493,"journal":{"name":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Predicting group emotion in kindergarten classes by modular Bayesian networks\",\"authors\":\"Sung-Bae Cho, Jun-Ho Kim\",\"doi\":\"10.1109/SOCPAR.2015.7492825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional methods predict emotion directly by measuring equipment like electrode. However, this approach is not suitable for education, especially for children. In this paper, we propose modular Bayesian networks for predicting the emotion with the environment information from the sensors. The Bayesian network is constructed as modules divided by Markov boundary. To evaluate the proposed method, we use data collected from kindergarten classes. The results show more than 84% accuracy and 20 times faster than the single Bayesian network.\",\"PeriodicalId\":409493,\"journal\":{\"name\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCPAR.2015.7492825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 7th International Conference of Soft Computing and Pattern Recognition (SoCPaR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCPAR.2015.7492825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

传统方法是通过电极等测量设备直接预测情绪。然而,这种方式并不适合教育,尤其是儿童。在本文中,我们提出了模块化贝叶斯网络来预测来自传感器的环境信息的情绪。贝叶斯网络被构造成由马尔可夫边界划分的模块。为了评估所提出的方法,我们使用从幼儿园班级收集的数据。结果表明,准确率超过84%,比单一贝叶斯网络快20倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting group emotion in kindergarten classes by modular Bayesian networks
Conventional methods predict emotion directly by measuring equipment like electrode. However, this approach is not suitable for education, especially for children. In this paper, we propose modular Bayesian networks for predicting the emotion with the environment information from the sensors. The Bayesian network is constructed as modules divided by Markov boundary. To evaluate the proposed method, we use data collected from kindergarten classes. The results show more than 84% accuracy and 20 times faster than the single Bayesian network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信