利用本体生成和分析程序调用图

Ethan Dorta, Yonghong Yan, C. Liao
{"title":"利用本体生成和分析程序调用图","authors":"Ethan Dorta, Yonghong Yan, C. Liao","doi":"10.1109/ProTools56701.2022.00008","DOIUrl":null,"url":null,"abstract":"Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.","PeriodicalId":193850,"journal":{"name":"2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating and Analyzing Program Call Graphs using Ontology\",\"authors\":\"Ethan Dorta, Yonghong Yan, C. Liao\",\"doi\":\"10.1109/ProTools56701.2022.00008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.\",\"PeriodicalId\":193850,\"journal\":{\"name\":\"2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools)\",\"volume\":\"196 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ProTools56701.2022.00008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ProTools56701.2022.00008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

调用图或调用者-被调用者关系已被用于各种类型的静态程序分析、性能分析和概要分析,以及程序安全性或安全性分析,例如检测程序执行异常或代码注入攻击。然而,不同的工具以不同的格式生成调用图,这阻碍了调用图结果的有效重用。本文提出了一种利用本体和资源描述框架(RDF)创建知识图来指定调用图的方法,以促进构建完整的、复杂的计算机程序调用图,实现比传统方法更具互操作性和可扩展性的程序分析。我们创建了一个正式的基于本体的调用图信息规范,以捕获静态和动态调用图的概念和属性,以便不同的工具可以协同贡献更全面的分析结果。我们的实验表明,本体可以使用标准查询接口合并由不同工具和灵活查询生成的调用图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating and Analyzing Program Call Graphs using Ontology
Call graph or caller-callee relationships have been used for various kinds of static program analysis, performance analysis and profiling, and for program safety or security analysis such as detecting anomalies of program execution or code injection attacks. However, different tools generate call graphs in different formats, which prevents efficient reuse of call graph results. In this paper, we present an approach of using ontology and resource description framework (RDF) to create knowledge graphs for specifying call graphs to facilitate the construction of full-fledged and complex call graphs of computer programs, realizing more interoperable and scalable program analyses than conventional approaches. We create a formal ontology-based specification of call graph information to capture concepts and properties of both static and dynamic call graphs so different tools can collaboratively contribute to more comprehensive analysis results. Our experiments show that ontology enables merging of call graphs generated from different tools and flexible queries using a standard query interface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信