头颈部肿瘤分割的多尺度融合方法

Abhishek Srivastava, Debesh Jha, B. Aydogan, Mohamed E.Abazeed, Ulas Bagci
{"title":"头颈部肿瘤分割的多尺度融合方法","authors":"Abhishek Srivastava, Debesh Jha, B. Aydogan, Mohamed E.Abazeed, Ulas Bagci","doi":"10.48550/arXiv.2210.16704","DOIUrl":null,"url":null,"abstract":"Head and Neck (H\\&N) organ-at-risk (OAR) and tumor segmentations are essential components of radiation therapy planning. The varying anatomic locations and dimensions of H\\&N nodal Gross Tumor Volumes (GTVn) and H\\&N primary gross tumor volume (GTVp) are difficult to obtain due to lack of accurate and reliable delineation methods. The downstream effect of incorrect segmentation can result in unnecessary irradiation of normal organs. Towards a fully automated radiation therapy planning algorithm, we explore the efficacy of multi-scale fusion based deep learning architectures for accurately segmenting H\\&N tumors from medical scans.","PeriodicalId":305210,"journal":{"name":"HECKTOR@MICCAI","volume":"603 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-Scale Fusion Methodologies for Head and Neck Tumor Segmentation\",\"authors\":\"Abhishek Srivastava, Debesh Jha, B. Aydogan, Mohamed E.Abazeed, Ulas Bagci\",\"doi\":\"10.48550/arXiv.2210.16704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Head and Neck (H\\\\&N) organ-at-risk (OAR) and tumor segmentations are essential components of radiation therapy planning. The varying anatomic locations and dimensions of H\\\\&N nodal Gross Tumor Volumes (GTVn) and H\\\\&N primary gross tumor volume (GTVp) are difficult to obtain due to lack of accurate and reliable delineation methods. The downstream effect of incorrect segmentation can result in unnecessary irradiation of normal organs. Towards a fully automated radiation therapy planning algorithm, we explore the efficacy of multi-scale fusion based deep learning architectures for accurately segmenting H\\\\&N tumors from medical scans.\",\"PeriodicalId\":305210,\"journal\":{\"name\":\"HECKTOR@MICCAI\",\"volume\":\"603 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HECKTOR@MICCAI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2210.16704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HECKTOR@MICCAI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2210.16704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

头颈部(H\&N)危险器官(OAR)和肿瘤分割是放射治疗计划的重要组成部分。由于缺乏准确可靠的描绘方法,难以获得H\&N淋巴结总肿瘤体积(GTVn)和H\&N原发性总肿瘤体积(GTVp)的不同解剖位置和尺寸。不正确分割的下游效应可能导致对正常器官不必要的照射。为了实现全自动放射治疗计划算法,我们探索了基于多尺度融合的深度学习架构在从医学扫描中准确分割H\&N肿瘤方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Scale Fusion Methodologies for Head and Neck Tumor Segmentation
Head and Neck (H\&N) organ-at-risk (OAR) and tumor segmentations are essential components of radiation therapy planning. The varying anatomic locations and dimensions of H\&N nodal Gross Tumor Volumes (GTVn) and H\&N primary gross tumor volume (GTVp) are difficult to obtain due to lack of accurate and reliable delineation methods. The downstream effect of incorrect segmentation can result in unnecessary irradiation of normal organs. Towards a fully automated radiation therapy planning algorithm, we explore the efficacy of multi-scale fusion based deep learning architectures for accurately segmenting H\&N tumors from medical scans.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信