块中前测/后测数据的回归模型

J. Singer, J. Nobre, Henry Corazza Sef
{"title":"块中前测/后测数据的回归模型","authors":"J. Singer, J. Nobre, Henry Corazza Sef","doi":"10.1191/1471082X04st083oa","DOIUrl":null,"url":null,"abstract":"We consider regression models with no intercepts to analyse pretest/posttest data from a dental study conducted under an experimental design involving a blocked factorial structure with two within individual factors. The proposed models accommodate block effects, heteroscedasticity, nonlinear relations between pretest and posttest measures and repeated measures. We compare multiplicative lognormal and gamma models to additive normal models fitted via generalized linear models methodology for repeated measures. Alternatively, we consider standard linear mixed models methodology to fit lognormal models, an option that facilitates modelling the within subjects covariance structure.","PeriodicalId":354759,"journal":{"name":"Statistical Modeling","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Regression models for pretest/posttest data in blocks\",\"authors\":\"J. Singer, J. Nobre, Henry Corazza Sef\",\"doi\":\"10.1191/1471082X04st083oa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider regression models with no intercepts to analyse pretest/posttest data from a dental study conducted under an experimental design involving a blocked factorial structure with two within individual factors. The proposed models accommodate block effects, heteroscedasticity, nonlinear relations between pretest and posttest measures and repeated measures. We compare multiplicative lognormal and gamma models to additive normal models fitted via generalized linear models methodology for repeated measures. Alternatively, we consider standard linear mixed models methodology to fit lognormal models, an option that facilitates modelling the within subjects covariance structure.\",\"PeriodicalId\":354759,\"journal\":{\"name\":\"Statistical Modeling\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1191/1471082X04st083oa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1191/1471082X04st083oa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们采用无截距的回归模型来分析一项牙科研究的测试前/测试后数据,该研究的实验设计涉及两个个体因素的阻塞因子结构。所提出的模型考虑了块效应、异方差、测前和测后测量之间的非线性关系以及重复测量。我们将乘法对数正态和伽马模型与通过重复测量的广义线性模型方法拟合的加性正态模型进行比较。或者,我们考虑标准的线性混合模型方法来拟合对数正态模型,这是一种有助于对受试者内部协方差结构建模的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regression models for pretest/posttest data in blocks
We consider regression models with no intercepts to analyse pretest/posttest data from a dental study conducted under an experimental design involving a blocked factorial structure with two within individual factors. The proposed models accommodate block effects, heteroscedasticity, nonlinear relations between pretest and posttest measures and repeated measures. We compare multiplicative lognormal and gamma models to additive normal models fitted via generalized linear models methodology for repeated measures. Alternatively, we consider standard linear mixed models methodology to fit lognormal models, an option that facilitates modelling the within subjects covariance structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信