{"title":"随机Hardy-Littlewood-Sobolev不等式及其在噪声色散的Strichartz估计中的应用","authors":"Romain Duboscq, Anthony Reveillac","doi":"10.5802/ahl.122","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the non-homogenous nature of the potential in the inequality, a constant proportional to the length of the interval appears on the right-hand-side. As a direct application, we derive local Strichartz estimates for randomly modulated dispersions and solve the Cauchy problem of the critical nonlinear Schrödinger equation.","PeriodicalId":192307,"journal":{"name":"Annales Henri Lebesgue","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On a stochastic Hardy–Littlewood–Sobolev inequality with application to Strichartz estimates for a noisy dispersion\",\"authors\":\"Romain Duboscq, Anthony Reveillac\",\"doi\":\"10.5802/ahl.122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the non-homogenous nature of the potential in the inequality, a constant proportional to the length of the interval appears on the right-hand-side. As a direct application, we derive local Strichartz estimates for randomly modulated dispersions and solve the Cauchy problem of the critical nonlinear Schrödinger equation.\",\"PeriodicalId\":192307,\"journal\":{\"name\":\"Annales Henri Lebesgue\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Lebesgue\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/ahl.122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Lebesgue","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/ahl.122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On a stochastic Hardy–Littlewood–Sobolev inequality with application to Strichartz estimates for a noisy dispersion
In this paper, we investigate a stochastic Hardy-Littlewood-Sobolev inequality. Due to the non-homogenous nature of the potential in the inequality, a constant proportional to the length of the interval appears on the right-hand-side. As a direct application, we derive local Strichartz estimates for randomly modulated dispersions and solve the Cauchy problem of the critical nonlinear Schrödinger equation.