基于三维感知形状特征的身体部位分类与姿态估计

J-HGBU '11 Pub Date : 2011-12-01 DOI:10.1145/2072572.2072595
Gang Hu, Q. Gao
{"title":"基于三维感知形状特征的身体部位分类与姿态估计","authors":"Gang Hu, Q. Gao","doi":"10.1145/2072572.2072595","DOIUrl":null,"url":null,"abstract":"Human body motion and gesture analysis has been boosted by the latest developments of 3D cameras and the high demands of emerging applications. Body parts classification and pose estimation are essential for the human body tracking and motion recognition. In this poster, we present a 3D perceptual shape feature-based approach for efficient body parts classification and pose estimation. The contribution of this work is twofold: 1) by utilizing 3D image features and kinematic constraints, the classification task can be efficiently performed without huge training data and costly learning process; 2) by applying the classification results, complexity of body pose estimation can be significantly reduced. Experimental results demonstrate the system performance, and exhibit the potential for complex body pose estimation and tracking.","PeriodicalId":404943,"journal":{"name":"J-HGBU '11","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"3D perceptual shape feature-based body parts classification and pose estimation\",\"authors\":\"Gang Hu, Q. Gao\",\"doi\":\"10.1145/2072572.2072595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human body motion and gesture analysis has been boosted by the latest developments of 3D cameras and the high demands of emerging applications. Body parts classification and pose estimation are essential for the human body tracking and motion recognition. In this poster, we present a 3D perceptual shape feature-based approach for efficient body parts classification and pose estimation. The contribution of this work is twofold: 1) by utilizing 3D image features and kinematic constraints, the classification task can be efficiently performed without huge training data and costly learning process; 2) by applying the classification results, complexity of body pose estimation can be significantly reduced. Experimental results demonstrate the system performance, and exhibit the potential for complex body pose estimation and tracking.\",\"PeriodicalId\":404943,\"journal\":{\"name\":\"J-HGBU '11\",\"volume\":\"62 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J-HGBU '11\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2072572.2072595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-HGBU '11","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2072572.2072595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

人体运动和手势分析已经推动了3D相机的最新发展和新兴应用的高要求。人体部位分类和姿态估计是人体跟踪和运动识别的关键。在这张海报中,我们提出了一种基于3D感知形状特征的方法,用于有效的身体部位分类和姿态估计。本文的贡献体现在两个方面:1)利用三维图像特征和运动学约束,无需大量的训练数据和昂贵的学习过程,即可高效地完成分类任务;2)应用分类结果,可以显著降低人体姿态估计的复杂度。实验结果证明了该系统的性能,并展示了复杂身体姿态估计和跟踪的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3D perceptual shape feature-based body parts classification and pose estimation
Human body motion and gesture analysis has been boosted by the latest developments of 3D cameras and the high demands of emerging applications. Body parts classification and pose estimation are essential for the human body tracking and motion recognition. In this poster, we present a 3D perceptual shape feature-based approach for efficient body parts classification and pose estimation. The contribution of this work is twofold: 1) by utilizing 3D image features and kinematic constraints, the classification task can be efficiently performed without huge training data and costly learning process; 2) by applying the classification results, complexity of body pose estimation can be significantly reduced. Experimental results demonstrate the system performance, and exhibit the potential for complex body pose estimation and tracking.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信